
SoLAR: Surrogate Label Aware Rewiring for
Graph-Task Alignment in GNNs

Celia Rubio-Madrigal⇤
celia.rubio-madrigal@cispa.de

Adarsh Jamadandi ⇤

adarsh.jamadandi@cispa.de

Rebekka Burkholz
burkholz@cispa.de

CISPA Helmholtz Center for Information Security
Stuhlsatzenhaus 5

66123 Saarbrücken

Abstract

Spectral based graph rewiring has been proposed to improve the performance
of message passing graph neural networks (GNNs) by alleviating problems like
over-squashing and over-smoothing. While spectral gap maximization is a com-
mon objective in rewiring, as we show, also its minimization can lead to better
generalization. We find that their effectiveness is tied to the alignment between
node labels and the latent community structure of the graph, as the spectral gap
primarily influences the community strength but not its alignment with the node
classification task. In the context of stochastic block models, we prove that this
alignment indirectly impacts the probability of rewiring edges between nodes with
the same or different labels, making it the most dominant factor in explaining
GNN performance. To enhance label-community alignment, we propose a novel
label-aware rewiring approach - SoLAR, that deletes inter-class and adds intra-class
edges based on predicted node classes from a surrogate model. As we show through
extensive experiments, the most promising surrogate models result from iterative
training/rewiring cycles of GNNs, we show consistent improvements over existing
baselines on a variety of datasets.

1 Introduction

Graph Neural Networks (GNNs) are a class of deep learning models that commonly adopt the
paradigm of message passing [22, 53, 19, 9]. Information is repeatedly aggregated and diffused
on the graph to generate a graph level representation that can be leveraged to perform either node-
level [34, 26, 61, 31] or graph-level tasks [18, 46, 32]. Although GNNs have found extensive
applications in a wide array of fields, including but not limited to Chemistry [49], Biology [7] and
even Physics [51, 57], they are also known to have several limitations. For instance, GNNs are
known to fail to distinguish simple graph structures [35, 41, 46]. Some other problems include
over-squashing [1, 60, 20], where topological bottlenecks in the input graph desensitize the node
features to information present in distant nodes, and over-smoothing [37, 44, 45, 65, 33], where node
features tend to become indistinguishable due to repeated aggregations and/or increased model depth.

A popular approach to circumvent problems like over-squashing and over-smoothing is to make
the input graph more amenable to message passing by rewiring the graph [60, 2, 21, 43, 32, 31], to

⇤Equal contribution.

Preprint. Under review.

obtain a better computational structure. Most proposed rewiring approaches so far focus on spectral
gap maximization to mitigate bottlenecks and thus attenuate a graph’s community structure. As
our first contribution, we point out that also spectral gap minimization and thus an amplification of
community structure can improve the performance of a GNN and provide a systematic analysis in
which scenarios one is preferred over the other.

We argue that current rewiring techniques overestimate their effectiveness by not accounting for
the alignment between the nodes’ ground truth labels and their cluster membership labels. If
this alignment is high —sometimes referred to as the cluster hypothesis [12], reducing the latent
community structure can be detrimental to the task. If the alignment is low, amplifying a misaligned
community can also be counterproductive. It is the case that spectral based rewiring either dampens
or amplifies the community structure regardless of the task.

We gain these insights by a theoretical analysis of random graphs drawn from the Stochastic Block
Model (SBM), a paradigm model of graphs with community structure, and a node classification task
where we can control two central quantities that determine the success of GNNs: the community
strength and task-community alignment. Also on real world graphs we observe that the amount of
edges that are rewired in support of task-community alignment correlate with the effectiveness of
different spectral rewiring approaches. Our analysis thus highlights the limits of spectral gap based
rewiring, as its success depends on the task-community alignment but cannot change this critical
factor, which determines the amount of edges between nodes that have different or the same label. In
fact, this quantity also determines the homophily of a graph, which is known to critically influence
the performance of GNNs [39].

To improve the alignment between community structure and graph labels, thus indirectly increasing
the homophily score (§C), we propose a novel graph rewiring approach (SoLAR) that overcomes
the aforementioned limitations of spectral based rewiring and also obtains a better computational
structure in terms of graph-task alignment. We present a graph nature (homophilic/heterophilic)
agnostic rewiring strategy that adopts a surrogate model’s predictions on test nodes as proxy labels to
delete inter-class edges and/or add intra-class edges (Figure 1). Our experiments confirm that the
SoLAR framework helps obtain significant performance boost on various real-world datasets.

In summary, our main contributions are:

• Complementing the graph rewiring literature on spectral gap maximization to fight over-
squashing, we highlight real-world cases in which spectral gap minimization is more
supportive of solving a node classification task than spectral gap maximization.

• Our theoretical insights into an exemplary task on SBMs and experimental evidence identifies
the degree of task and community structure alignment as the most critical underlying factor
to explain when spectral gap rewiring improves a learning task. We present an analysis of
the type of edges added or pruned by maximization or minimization and the cases when that
is preferable, suggesting that this alignment underlies their success.

• To obtain a better alignment by rewiring, we propose SoLAR (see Fig. 1), which rewires
edges with the help of a surrogate model. Our theory and experiments on various real
world benchmark datasets demonstrate the effectiveness of SoLAR, which systematically
outperforms spectral gap rewiring baselines.

2 Related work

Graph rewiring. A key component for GNNs is the input graph, since it not only acts as the
data for model training but is also the computational structure on which message passing [19] is
performed. Real world graphs, however can be noisy and sub-optimal for downstream tasks. For
example, recent studies have pointed out issues like over-squashing [1, 60, 20], where presence of
topological bottlenecks affect how information is diffused. This highlights the importance of the
graph topology and begs the question —how can we obtain an optimal computational structure that
aligns with the downstream task? Graph rewiring has emerged as a popular technique to effect
changes to the edge structure. This can be done based on various criteria. For instance, [60, 21, 43]
propose to use different variants of Ricci curvature [25] to rewire the graph, while [6] argue for
the effective resistance [11], and [4, 17] transform the input graph into an expander graph [50] for
efficient message passing.

2

GNN
Model A . GNN

Model B

(1) Train A (2) Predict (3) SoLAR Rewire (4) Train B (5) Predict

Figure 1: SoLAR: Surrogate Label Aware Rewiring. A first model A is trained on the original graph
(1), and used to predict its test labels (2). The graph is then rewired (3) based on these predictions:
adding same-class edges, and/or deleting different-class edges. A second model B is trained on the
new graph (4). This trained model can be used to test performance (5), but also circle back to step (2)
for an iterative version of SoLAR. We write A.B to indicate different model combinations, used in
the given order.

Spectral gap maximization. Contemporaneously, spectral based methods such as [32] aim to
maximize the spectral gap by edge additions, as a larger spectral gap is inherently linked to faster
mixing time [36] and thus better information flow. However, this can be detrimental in case of
heterophilic graphs [39, 47] as we might add edges between nodes of different labels resulting in
over-smoothing [37, 44, 45, 65, 33]. Spectral gap can also be maximized by deleting edges [31] and
this has shown to be beneficial in slowing down detrimental over-smoothing while simultaneously
mitigating over-squashing, especially in heterophilic settings. Contrarily, [2] advocate for spectral
gap minimization, but do not explain when this is advantageous.

Community and task alignment. Our findings reveal that the underlying mechanism enhancing the
GNN performance when rewiring actually depends on whether we modify edges connecting nodes
with similar or dissimilar labels, and their influence on the latent community structure of the graph. In
fact, [29] take a first step in this direction by analysing the inter-play between community and node-
labels. They propose an information theoretic metric, and demonstrate its impact on performance
by artificially creating and destroying communities in real-world graphs. This also highlights the
importance of positive influence of same-label neighbours and how different label neighbours can be
distracting for node classification [13]. We take this analysis several steps further and answer why
spectral rewiring cannot induce graph-task alignment. We propose a novel proxy label based rewiring
scheme which can provide us with a computational structure that aligns well with the task. This is
reminiscent of [62, 28] which combines label propagation with GNNs to enhance the performance.
In contrast to rewiring based on the cosine similarity of node features [23, 5] to improve homophily,
we do not rely on a potentially non-robust decision what constitutes features as similar, and use more
reliable information for rewiring resulting in higher performance (see Table 5 in §B).

Knowledge distillation. There are also notable differences between our strategy and approaches
related to knowledge distillation and pre-training. We do not transfer knowledge encoded in the model
[64, 63, 59] nor do we use context prediction/attribute masking proposed in [27] for pre-training
GNNs. Note that there have also been several works that explore the application of GNNs in the
context of community detection [10, 15, 55], which is not the focus of this paper.

3 Conceptual analysis

3.1 Spectral rewiring affects community strength

Spectral rewiring approaches usually focus on reducing over-squashing by maximizing the spectral
gap of the input graph. However, maximizing the gap has a distinct effect on its latent community

3

(a) Original SBM. (b) Maximizing spectral gap. (c) Minimizing spectral gap.

Figure 2: Visualizing the effect of spectral graph maximization and minimization by deleting edges
on a perfectly aligned SBM with 100 nodes.

structure. It is the case that, by maximizing the spectral gap, inter-community edges are added and
intra-community edges are deleted, which attenuates the community strength (Theorem 1).

When there is a high task-community alignment —which has also been termed as the cluster
hypothesis [12]— the addition of inter-community edges likely corresponds to more inter-class
edges, while the removal of intra-community edges likely corresponds to less intra-class edges.
Consequently, message passing happens on a less informative computational structure, rendering
the rewiring detrimental to the performance of any classifier (Theorem 2). On the other hand, by
minimizing the spectral gap inter-community edges are deleted and intra-community edges are added,
which strengthens the community structure. If this structure is highly aligned with the labels, the
rewiring is beneficial.

We illustrate the case of high task-community alignment of graphs with a paradigmatic example: the
Stochastic Block Model (SBM (p, q, C)) which is a random graph model with planted communities.
The nodes are partitioned into C communities —we adopt a binary SBM (C = 2) unless explicitly
stated otherwise. The edges are randomly sampled with probabilities p for intra-community edges
and q for inter-community edges. We summarize our findings in the theorems below. Their proofs
can be found in §A of the appendix.
Theorem 1 (A less pronounced community structure corresponds to a higher spectral gap). Let G be

a (p-q)-SBM with N nodes in 2 equally-sized communities and intra/inter-edge probabilities p > q.

Let G
del

be a (p
0
-q)-SBM where p

0
< p, and G

add
be a (p-q

0
)-SBM where q

0
> q. The (expected)

spectral gap of G is smaller than those of G
del

and G
add

: �1(G) < �1(Gdel), and �1(G) < �1(Gadd).
In fact, the spectral gap is approximately / q�p

q+p .

Theorem 2 (A less pronounced community structure harms performance —if high task-community
alignment). Let G be the (p-q)-SBM from Theorem 1. Let xi be the single feature of node i, and `i its

label, which corresponds to node i’s community. Let f be an optimal classifier on the model’s features,

X , and e(f,X) the (expected) proportion of misclassified nodes. After a step of sum aggregation, e

is monotonically decreasing with respect to p, and increasing with respect to q.

3.2 Varying the amount of task-community alignment

Theorem 2 applies to a Stochastic Block Model with a perfect alignment between its clusters and the
task. However, in real-world graphs this assumption is not always present. The relationship between
the task and the underlying community structure —which can even be missing— can take more
complex forms. For instance, in heterophilic settings, same-label nodes do not need to be connected,
so the effect of spectral rewiring on them is not straightforward. While spectral rewiring can influence
performance by modifying how pronounced the latent community structure is, aggregation on the
input graph is much more effective if we improve the mentioned alignment directly, which spectral
rewiring fails to do.

This intuition is corroborated and quantified by our theory. Theorem 3 describes the behaviour of
the proportion of misclassified nodes after a step of neighborhood aggregation. If we take = 1
we obtain the same behaviour as in Theorem 2. If we take = 0 we obtain an SBM with the
labels exactly opposite their communities, so by renaming the communities we get back to a perfect
alignment. If = 0.5 then P (M) = �(0) = 1

2 , so half the nodes are misclassified and this classifier

4

(a) Correlation of some scores for different values
of (p, q).

(b) Accuracy of a GCN trained on different (p, q)
(for 5 different seeds).

Figure 3: The effects of Theorem 1 (for spectral gap) and Theorems 2, 3 (for accuracy) on several 1000-
node SBM-(p, q). Each SBM has different p and q, where p = {0.5, 0.7, 0.99} and q = {0.2, 0.5},
and different alignment between the labels and the planted communities: {0.9, 0.95, 1}, as well as an
example of 0.6 alignment which gets practically null performance. Spectral gap correlates perfectly
with q�p

p+q , and negatively with the community structure and the homophily with perfect alignment.
Thus, it is equivalent to plot Figure 3(b) with any of these as the x-axis.

is as good as a random choice. While, in this setup, most of the real distributions of neighbours follow
binomials, we have reduced the formula with normal approximations to look at the continuous trends.
All nuances are derived in the proof A.3. From it we can learn that the parameter is crucial to the
GNN performance.
Theorem 3 (The effect of different task-community alignments on performance). Let G be the

(p-q)-SBM from Theorem 1 (p > q). Let xi be the single feature of node i where xi ⇠ N (�1, 1) or

xi ⇠ N (1, 1) depending on its class, and `i its label, which may correspond to node i’s community

with a fixed probability . After a step of sum aggregation, the proportion of misclassified nodes of

the best classifier f is approximately

P (M) ⇡ 1� + (2 � 1)�

0

@ �N
2 (2 � 1)(p� q)

q
N
2 (p+ q + p(1� p) + q(1� q) + 2(p� q)2 (1�))

1

A

3.3 Experiments on SBM for different p and q

The previously stated theorems are also supported by empirical results. We create an SBM graph
where the node features are generated from two normal distributions according to their class, which
corresponds to the community cluster with a fixed probability (the alignment). Figure 2 visually
shows what is proved in Theorem 1: that maximizing the spectral gap results in a weaker latent
community structure, while minimization enhances it. But how does changing the spectral gap
affect performance? For different values of p and q, we train a 2-layered GCN [34] and measure
the Normalized Mutual Information (NMI) [15] between the ground truth labels and the predictions
made by the GCN, which we show in Figure 3(b).

Following the results for the proof of Theorem 1, in Figure 3(a) the spectral gap correlates with q�p
q+p ,

and also in this case with the community strength of the SBM (negatively), as well as with the graph’s
normalized homophily score when the alignment is perfect. When it is weaker, the homophily also
decreases homogeneously. In Figure 3(b) we compare the spectral gap of these different SBM graphs
against the accuracy of a GCN trained on it, using a fixed train-test split.

In cases of high homophily and high alignment, it is beneficial to minimize the spectral gap, as the
communities that get strengthened also correspond to the task labels. However, the spectral gap does
not completely correlate with the GCN accuracy, as it can only affect the community strength. We

5

(a) Number of edges that connect nodes with the
Same Labels (SL) and the Same Community (SC).

(b) Number of edges that connect nodes with Dif-
ferent Labels (DL) in Different Communities (DC).

Figure 4: The total number of edges that connect nodes with the same or opposite labels in an
SBM-(p, q) setup for different values of p and q. The number of SLSC edges correlates with the
accuracy in some cases where the proportion of these edges (homophily) does not. The communities
are calculated with a modularity maximization algorithm, so they correspond to the latent structures
and not the generated ones.

can also see that the lack of task-graph alignment very quickly dampens the GNN perfomance, as
shown by the different hues in the scatter plot. Changing the alignment only from 1.0 to 0.95 reduces
dramatically the influence of different (p, q) on the performance.

But even within the same theoretical alignment, the topology of the graph has more nuance on the
accuracy values. For instance, the SBM-(0.5, 0.2) has a lower spectral gap (and higher homophily)
than the SBM-(0.99, 0.5), although a worse test performance. This might be explained by a higher
amount of same-label edges —in spite of having a lower proportion of them over all edges, as seen in
Figure 4. More same-label edges better support the task, so it is natural to propose a rewiring approach
that aims to maximize this quantity, especially if these edges stay within the latent communities. In
the same spirit we can try to minimize the number of opposite-label edges too. Both approaches lead
to our framework SoLAR (§4).

3.4 Analysis on real-world datasets

When training GNNs on real world datasets, the trends in accuracy scores become more complex.
It is not straightforward to know when minimization or maximization works the best nor do we get
an insight into how many edge modifications are required to see a change in the GNN performance.
On one hand, very homophilic datasets might be similar to the SBM setup described in the previous
theorems, so spectral maximization is detrimental in the long run —as seen for Cora and Citeseer in
Figure 5, where the alignment between labels and communities gets heavily reduced, and so does
the accuracy. On the other hand, improving the connectivity might be key for some tasks, where,
for example, information needs to travel across different clusters. All different kinds of spectral
rewiring methods are usually effective for small number of edge changes, as they might locally have
a denoising effect for some edges.

However, the trend variability for spectral rewiring might be explained by the type of edges it adds
or deletes, in terms of both the labels and the communities they connect. We show in Figure 6 the
number of edges that connect nodes with the same or different labels and communities, for spectral
minimization, maximization, and random rewiring of 500 edges, for both Cora and Chameleon. We
use the spectral gap optimization algorithms presented in [31], as they are computationally cheaper to
approximate. We can easily substitute this with any method that performs spectral gap optimization
like FoSR [32]. The amount of edges for each type clearly changes from the homophilic to the
heterophilic case for the different methods.

In the first row (MinGap), we see that minimization adds same-community edges more than the
other two methods. When adding edges in homophilic settings (Cora) this is preferred, because
these same-community edges are mostly same-label (Same C: 152/21). However, in heterophilic

6

Figure 5: Maximizing the spectral gap (using [31]) on Cora and Citeseer reduces both the task-graph
alignment and the test accuracy.

(a) Cora: additions vs. deletions (b) Chameleon: additions vs. deletions

Figure 6: Alignment matrices for Cora (homophilic) and Chameleon (heterophilic) by a 500-edge
rewiring method. In each row: spectral minimization and maximization from [31], and random
rewiring. In each column: additions and deletions. Each alignment matrix compares the number of
edges added/deleted in terms of the type of nodes it connects: with the Same or Different L(abel),
and with the Same or Different C(ommunity).

settings (Chameleon) the opposite is true: making the community structure more pronounced adds
edges connecting different labels (Same C: 95/265). Deletions are, however, more similar to random
rewiring, with the exception of a subtle increase in the pruning of different-community edges for the
heterophilic setting, compared to random (Different C: -15/-59).

In the second row, MaxGap exclusively adds different-community edges. In homophilic settings
this is detrimental, as most of them will be from different classes (Different C: 36/464). However,
in heterophilic settings it might connect nodes of the same class, which helps align the community
structure with the task (Different C: 152/348). MaxGap also prunes almost exclusively same-
community edges, which is again detrimental for the homophilic case (Same C: -409/-57) and more
helping in the heterophilic case (Same C: -167/333). The fact that spectral pruning maximization
helps especially in heterophilic settings is supported by the experimental evidence in [31].

The alignment matrices serve as a guiding principle to determine if spectral gap maximization or
minimization should be preferred. However, spectral gap optimization fails to transform the input
graph into a computational structure that is well aligned for the downstream task. As a resolution, we

7

advocate for a rewiring strategy that aims to maximize the amount of same-label and minimize the
amount of different-label edges directly.

4 SoLAR: Surrogate Label Aware Rewiring

Let G = (V, E) be an undirected and unweighted graph with |V| nodes and |E| edges. The adjacency
matrix A 2 R|V|⇥|V| encodes the graph topology. We use a 2-layered GCN [34, 14] which operates
on the degree normalized adjacency matrix Â = D̃

�1/2(A+ I)D̃�1/2 and X is the associated node
features. The task is to perform node classification in a transductive setting. That is, given a set
of nodes Vtrain whose labels Ytrain are available, we are required to predict the labels of nodes
Vtest = V\Vtrain. Let Z be the predictions made by the GCN

Z = softmax(Â�(ÂX⇥(0))⇥(1) (1)

where �(·) is a non-linear activation function such as ReLU and ⇥ the weight matrix. We propose a
simple yet highly effective strategy that uses predictions made by a surrogate GNN model as proxy
labels for graph rewiring —since we do not have access to test node labels in a semi-supervised
setting. The process works in two stages. In the first stage, we instantiate a surrogate GNN
Z1 = fsurrogate(G,⇥) (such as in Equation (1)), and train it to convergence to obtain a set of
predicted labels. We then use the predicted labels, Z1 = Yproxy, to rewire the graph by either
deleting inter-class edges and/or adding intra-class edges to obtain a rewired graph Ĝ = (V, Ê) —we
use the predictions on the test set, as we already have access to the ground truth labels for the nodes
in the train set. In the second stage, we instantiate a second ‘training’ GNN —ftrain(Ĝ,⇥), which
operates on the new computational structure. Note that f(G,⇥) can be any model which is expressive
enough. The process is illustrated in Figure 1.

Apart from GCN models, in Section §5 we experiment with GATv2 [8] to ablate the effect of model
expressivity on the quality of the proxy labels. The above outlined process can be either done in
a one-shot way, where the pre-requisite number of edges are deleted/added at once to obtain the
modified graph or can be done iteratively, that is, train-rewire-train (cf. §C.1). We present results on
node classification using both the methods.

5 Experiments

We perform node classification on the following homophilic datasets: Cora [40], Citeseer [54] and
Pubmed [42], Co-author CS, Physics and Amazon Photos [56]. We also report results on heterophilic
graphs Chameleon, Squirrel, Actor and the WebKB datasets consisting of Cornell, Wisconsin and
Texas [48]. Additionally, we include three large heterophilic graphs: Roman-empire and Amazon-
ratings introduced in [48], and Penn94 [38]. Our backbone models are GCN [34] and GATv2 [8].
We present results for both one-shot SoLAR and Iterative SoLAR (in Section §C.1).

As we have access to the ground truth labels for the train set and the proxy labels for test set, we
already have a good estimation of how many inter-class/intra-class edges are present in a graph. This
allows us to make quick decisions about the number of edges to modify, without having to tune it
like in other rewiring approaches [60, 32, 43, 21, 31]. For instance, Cora allows for deleting roughly
1700 inter-class edges without disconnecting the graph, so with this edge modification budget as our
constraint we can choose to have as many train-rewire-train iterations.

We adopt 60/20/20 splits for training, validation and testing respectively. The final test accuracy is
reported averaged over 100 splits of the data. See Section §D for training details and hyperparameters
used. We test two GNN models to see the effect of quality labels from an expressive model has
on the generalization performance. The top performance is highlighted in bold. We compare GCN
and GATv2 operating on the original graph with FoSR [32], which approximates the spectral gap
change using a first order approximation and adds edges that maximize this proxy, PROXYDELMIN
[31] deletes edges that minimize the spectral gap, and our proposed rewiring method: GCN.GCN and
GATv2.GATv2, where the first model gives the proxy labels for rewiring the graph and the second
model uses the rewired graph for training on the downstream task. Note that we use the ground
truth labels for the train nodes and the surrogate labels for the test nodes only. We report results for
both predicted-inter-class edge deletions and predicted-intra-class edge additions. When deleting

8

Table 1: Node classification using one-shot SoLAR on large heterophilic graphs.

Method Roman-Empire Amazon-Ratings Penn94

GCN 77.74±0.60 47.66±0.54 82.29±0.77
GATv2 82.52±0.50 47.66±0.95 81.85±3.02

GCN+FoSR 73.60±1.11 49.68±0.73 69.73±7.83
GATv2+FoSR 81.88±1.07 51.36±0.62 72.56±5.55

GCN.GCN+Delete 80.90±0.14 50.30±0.09 83.59±1.40
GCN.GCN+Add 81.13±0.21 49.86±0.11 83.65±1.69

GATv2.GATv2+Delete 84.32±0.80 52.06±0.00 83.58±1.60
GATv2.GATv2+Add 84.27±0.40 52.08±0.09 83.60±1.32

inter-class edges we ensure we do not disconnect the graph and leave few edges to preserve the
original structural integrity of the graph.

In Table 2 we present the results for the homophilic graphs, and in Table 1 and Table 3 we present
results for the heterophilic graphs. Evidently, our proposed rewiring boosts the GNN performance
across all datasets tested. Especially on large heterophilic datasets like Roman-empire and Amazon-
ratings, we can see the combination of GATv2.GATv2 giving the best performance. This highlights
the importance of the expressiveness of the surrogate model which endows the proxy labels: a more
powerful model like GATv2 will have stronger effect on the quality of the labels.

Table 2: Node classification on homophilic graphs using one-shot SoLAR.

Method Cora Citeseer Pubmed CS Physics Photo

GCN 87.94±3.35 79.38±3.48 81.99±1.42 92.44±0.67 93.64±0.16 92.89±1.23
GATv2 89.13±3.13 81.92±4.81 81.83±1.04 91.90±1.59 94.07±0.44 91.22±2.18

GCN+FoSR 88.74±2.70 79.48±3.77 82.22±1.24 93.54±0.80 94.72±0.21 90.57±3.82
GATv2+FoSR 89.72±2.91 81.75±4.86 81.29±2.31 92.35±1.21 93.96±0.40 90.48±2.57

GCN+Proxydelmin 89.35±2.92 79.56±2.96 82.89±1.53 93.66±0.83 94.61±0.27 92.46±2.16
GATv2+Proxydelmin 89.61±3.00 81.57±3.56 81.59±1.43 93.31±1.21 94.43±0.33 93.86±1.61
GCN.GCN+Delete 90.17±2.82 82.22±4.01 82.61±1.16 93.00±0.21 93.96±0.10 93.75±0.99
GCN.GCN+Add 90.06±2.56 83.26±4.44 83.05±2.50 92.46±0.56 95.47±0.31 92.13±0.32

GATv2.GATv2+Delete 90.06±3.31 83.01±4.32 82.41±2.46 94.16±1.79 95.01±0.54 93.78±1.30
GATv2.GATv2+Add 89.63±3.16 81.78±4.44 81.32±1.66 92.79±1.58 94.25±0.46 93.36±1.93

Table 3: Node classification on heterophilic graphs using one-shot SoLAR.

Method Cornell Texas Wisconsin Chameleon Squirrel Actor

GCN 68.31±8.13 73.47±10.13 66.14±9.23 54.64±6.94 43.25±6.32 28.26±3.22
GATv2 86.84±9.78 89.01±10.43 87.56±9.20 61.79±10.20 45.71±5.12 29.41±2.98

GCN+FoSR 71.64±9.80 73.93±10.23 65.85±7.73 54.40±6.58 42.80±6.40 28.66±3.21
GATv2+FoSR 76.12±6.51 78.15±7.81 74.08±9.01 46.48 ± 4.97 47.40±7.17 27.45±3.61

GCN+Proxydelmin 81.94±7.96 83.46±10.90 70.63±7.68 53.64±6.00 41.26±5.35 28.58±2.93
GATv2+Proxydelmin 85.40±7.64 83.44±9.52 79.78±11.26 66.15±12.01 45.02±5.13 32.37±4.36
GCN.GCN+Delete 68.35±8.54 74.12±9.89 67.85±7.14 57.19 ± 6.45 44.50±6.29 29.25±3.50
GCN.GCN+Add 69.42±8.93 74.20±10.26 68.51±7.20 56.43 ± 6.16 44.04±6.34 28.16±3.22

GATv2.GATv2+Delete 87.40±9.89 90.14±10.64 88.32±9.08 68.89±11.50 49.10±5.59 30.31±4.29
GATv2.GATv2+Add 87.12±9.59 87.97±10.95 87.76±9.57 66.35±11.18 46.44±6.00 29.46±4.67

6 Discussion

It is clear from our analyses (§3) and supporting experiments (§5) that our rewiring strategy helps
achieve better GNN performance, as it transforms the input graph to a computational structure which
is better aligned with the learning task. Our approach works seamlessly for both homophilic and
heterophilic settings— contrary to methods which use non-robust feature similarity measures [28, 5]
or require expensive k-hop rewiring during training [24] to be effective. Our approach is also more
powerful in that it is capable of directly influencing measures (cf. §C) that are critical for GNN
performance, as opposed to methods that rely purely on the topological characteristics of the input

9

graph [60, 32, 43, 21, 31] like the spectral gap. However, it is important to note that the quality of
rewiring largely depends on the surrogate model’s ability to provide accurate labels. If the predicted
labels are too noisy, they will also not be very informative for the rewiring, and may even amplify
issues that were already present in the initial model. In this case, it could be interesting to take
features into account, combining this work with [23, 5]. Furthermore, this rewiring does not explicitly
address other problems that arise in GNNs, such as over-squashing and over-smoothing; the impact of
these issues may still persist during training. Another approach for a more complex rewiring strategy
could be to combine spectral and label-aware rewiring in order to preserve sufficient connectivity.

References
[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical

implications. In International Conference on Learning Representations, 2021.

[2] Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. Diffwire:
Inductive graph rewiring via the lovász bound, 2022.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

[4] Pradeep Kr. Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar.
Oversquashing in gnns through the lens of information contraction and graph expansion. In
2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
page 1–8. IEEE Press, 2022.

[5] Wendong Bi, Lun Du, Qiang Fu, Yanlin Wang, Shi Han, and Dongmei Zhang. Make heterophily
graphs better fit gnn: A graph rewiring approach, 2022.

[6] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing
in gnns through the lens of effective resistance. In Proceedings of the 40th International

Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[7] Pietro Bongini, Niccolò Pancino, Franco Scarselli, and Monica Bianchini. Biognn: How graph
neural networks can solve biological problems. In Artificial Intelligence and Machine Learning

for Healthcare, pages 211–231. Springer, 2023.

[8] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In
International Conference on Learning Representations, 2022.

[9] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. CoRR, abs/2104.13478, 2021.

[10] Joan Bruna and X Li. Community detection with graph neural networks. stat, 1050:27, 2017.

[11] Ashok K. Chandra, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolensky, and Prasoon
Tiwari. The electrical resistance of a graph captures its commute and cover times. computational

complexity, 6(4):312–340, 1996.

[12] O. Chapelle, B. Scholkopf, and A. Zien, Eds. Semi-supervised learning (chapelle, o. et al., eds.;
2006) [book reviews]. IEEE Transactions on Neural Networks, 20(3):542–542, 2009.

[13] Hao Chen, Yue Xu, Feiran Huang, Zengde Deng, Wenbing Huang, Senzhang Wang, Peng
He, and Zhoujun Li. Label-aware graph convolutional networks. In Proceedings of the 29th

ACM International Conference on Information & Knowledge Management, CIKM ’20, page
1977–1980, New York, NY, USA, 2020. Association for Computing Machinery.

[14] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. In International Conference on Machine Learning,
2021.

[15] Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community detection with line graph
neural networks. In International Conference on Learning Representations, 2019.

[16] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community structure in very
large networks. Phys. Rev. E, 70:066111, Dec 2004.

10

[17] Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propagation. In The First

Learning on Graphs Conference, 2022.

[18] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification. In International Conference on Learning

Representations, 2020.

[19] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International

Conference on Machine Learning - Volume 70, ICML’17, page 1263–1272. JMLR.org, 2017.

[20] Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio’, and
Michael Bronstein. On over-squashing in message passing neural networks: The impact of
width, depth, and topology, 2023.

[21] Jhony H. Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D. Malliaros.
On the trade-off between over-smoothing and over-squashing in deep graph neural networks.
In Proceedings of the 32nd ACM International Conference on Information and Knowledge

Management, CIKM ’23, page 566–576, New York, NY, USA, 2023. Association for Computing
Machinery.

[22] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pages 729–734 vol. 2, 2005.

[23] Jiayan Guo, Lun Du, Wendong Bi, Qiang Fu, Xiaojun Ma, Xu Chen, Shi Han, Dongmei Zhang,
and Yan Zhang. Homophily-oriented heterogeneous graph rewiring. In Proceedings of the ACM

Web Conference 2023, WWW ’23, page 511–522, New York, NY, USA, 2023. Association for
Computing Machinery.

[24] Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. DRew:
Dynamically rewired message passing with delay. In International Conference on Machine

Learning, pages 12252–12267. PMLR, 2023.

[25] Richard Hamilton. The ricci flow on surfaces. In Mathematics and general relativity, Proceed-

ings of the AMS-IMS-SIAM Joint Summer Research Conference in the Mathematical Sciences

on Mathematics in General Relativity, 1988.

[26] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on
Large Graphs. In NIPS, pages 1024–1034, 2017.

[27] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on

Learning Representations, 2020.

[28] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. Combining label
propagation and simple models out-performs graph neural networks. CoRR, abs/2010.13993,
2020.

[29] Hussain Hussain, Tomislav Duricic, Elisabeth Lex, Denis Helic, and Roman Kern. The interplay
between communities and homophily in semi-supervised classification using graph neural
networks. Applied Network Science, 6(1):80, 2021.

[30] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift, 2015.

[31] Adarsh Jamadandi, Celia Rubio-Madrigal, and Rebekka Burkholz. Spectral graph pruning
against over-squashing and over-smoothing, 2024.

[32] Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. FoSR: First-order spectral
rewiring for addressing oversquashing in GNNs. In The Eleventh International Conference on

Learning Representations, 2023.

11

[33] Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over)smoothing.
In The First Learning on Graphs Conference, 2022.

[34] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In ICLR, 2017.

[35] Adrien Leman. The reduction of a graph to canonical form and the algebra which appears
therein. 1968.

[36] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times.
American Mathematical Society, 2006.

[37] Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In The IEEE International Conference on Computer Vision (ICCV), 2019.

[38] Derek Lim, Felix Matthew Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Prasad
Bhalerao, and Ser-Nam Lim. Large scale learning on non-homophilous graphs: New bench-
marks and strong simple methods. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

[39] Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In International Conference on Learning Representations, 2022.

[40] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3(2):127–163,
2000.

[41] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):4602–4609,
Jul. 2019.

[42] Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for
collective classification. 2012.

[43] Khang Nguyen, Hieu Nong, Vinh Nguyen, Nhat Ho, Stanley Osher, and Tan Nguyen. Revisiting
over-smoothing and over-squashing using ollivier-ricci curvature, 2023.

[44] Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass
filters. ArXiv, abs/1905.09550, 2019.

[45] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations, 2020.

[46] Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. DropGNN: Random
dropouts increase the expressiveness of graph neural networks. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
2021.

[47] Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characteriz-
ing graph datasets for node classification: Homophily-heterophily dichotomy and beyond. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[48] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at evaluation of gnns under heterophily: Are we really making
progress? In The Eleventh International Conference on Learning Representations, 2023.

[49] Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Hous-
sam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, and Pascal Friederich. Graph
neural networks for materials science and chemistry. Communications Materials, 3(1):93, 2022.

[50] Justin Salez. Sparse expanders have negative curvature, 2021.

12

[51] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In Hal Daumé III and
Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 8459–8468. PMLR, 13–18
Jul 2020.

[52] Ryoma Sato. Training-free graph neural networks and the power of labels as features, 2024.

[53] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

[54] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008.

[55] Oleksandr Shchur and Stephan Günnemann. Overlapping community detection with graph
neural networks. Deep Learning on Graphs Workshop, KDD, 2019.

[56] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation, 2019.

[57] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. Machine Learning: Science and Technology, 2(2):021001, jan 2021.

[58] John R. Silvester. Determinants of block matrices. Mathematical Gazette, 84(501):460–467,
November 2000.

[59] Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang, and Nitesh V. Chawla. Knowledge
distillation on graphs: A survey, 2023.

[60] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In International Conference on Learning Representations, 2022.

[61] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In ICLR, 2018.

[62] Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label
propagation, 2020.

[63] Cheng Yang, Yuxin Guo, Yao Xu, Chuan Shi, Jiawei Liu, Chunchen Wang, Xin Li, Ning Guo,
and Hongzhi Yin. Learning to distill graph neural networks. In Proceedings of the Sixteenth

ACM International Conference on Web Search and Data Mining, WSDM ’23, page 123–131,
New York, NY, USA, 2023. Association for Computing Machinery.

[64] Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge
from graph convolutional networks. In 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 7072–7081, 2020.

[65] Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu.
Dirichlet energy constrained learning for deep graph neural networks. Advances in neural

information processing systems, 2021.

13

Appendix

A Proofs

A.1 Proof of Theorem 1

Proof. We consider an SBM with 2 classes and N
2 nodes in each class, with intra-class edge prob-

ability p and inter-class edge probability q. Its adjacency matrix A is a random matrix where
Aij = Bernoulli(p) if nodes i, j are in the same cluster, and Aij = Bernoulli(q) otherwise. For a
large N , the adjacency matrix A can be approximated by its expected value, which is a block matrix:

Ã =

✓
P Q

Q P

◆
, where P = p · N

2
+(1�p)IN

2
, where all values are p except the diagonal with ones,

and Q = q · N
2

. Thus, the expected degree matrix D̃ is diagonal with entries D̃ii = 1�p+ N
2 (p+q).

To find the second largest eigenvalue �2, we need to spectrally analyze the (expected) normalized

Laplacian of Ã; that is, L = I � D̃
�1/2

ÃD̃
�1/2. We have that D̃�1/2 =

⇣
1

1�p+N
2 (p+q)

⌘1/2
IN , so

D̃
�1/2

ÃD̃
�1/2 =

1

1� p+ N
2 (p+ q)

!
Ã := d̃Ã

We need to find � such that det (L� �I) = 0. We have

L� �I = I � d̃Ã� �I = �d̃Ã� (�� 1)I =

✓
�d̃P � (�� 1)I �d̃Q

�d̃Q �d̃P � (�� 1)I

◆

(�d̃P � (�� 1)I) and �d̃Q commute, so by [58], the determinant of that matrix is

det

✓⇣
�d̃P � (�� 1)I

⌘2
�
⇣
�d̃Q

⌘2◆
= det

⇣
d̃(Q� P)� (�� 1)I

⌘
det
⇣
�d̃(P +Q)� (�� 1)I

⌘

We have that Q�P = (q�p)· N
2
+(1�p)IN

2
, which has eigenvalues (1�p) and ((q�p)N2 +(1�p)),

so we finally get the required eigenvalue

�2 = d̃((q � p)
N

2
+ (1� p)) + 1 =

(q � p)N2 + (1� p)

(q + p)N2 + (1� p)
+ 1

For N > 2 and p, q 2 (0, 1): @
@p

⇣
(q�p)N

2 +(1�p)

(q+p)N
2 +(1�p)

+ 1
⌘

= � 2N(Nq+2)
((N�2)p+Nq+2)2

< 0, while

@
@q

✓
((p�q)N

2 +(1�p))
((p+q)N

2 +(1�p))
+ 1

◆
= 2N2p

((N�2)p+Nq+2)2
> 0. This proves that �2 increases when p de-

creases, and when q increases. So a higher spectral gap is related to a lower community structure.

A.2 Proof of Theorem 2

Proof. We consider an SBM with 2 classes and N
2 nodes in each class, with intra-class edge proba-

bility p and inter-class edge probability q. Each node i 2 {0, . . . , N � 1} has one feature, xi, and a
label `i which corresponds to the block it belongs to: `i = 1 , i � N

2 . The task is, therefore, to
predict each node’s community association. In this case, the alignment of communities and labels is
perfect.

Each feature xi is aligned with its label following a normal distribution: class-0 node features follow
N (�µ0,�

2
0), while class-1 node features follow N (µ0,�

2
0), as shown in Figure 7(a). A perfect

classifier f without any knowledge of the graph structure builds a decision boundary at x = 0.
The expected number of misclassified nodes is N

2 times the intersection area of both distributions
—because they are normalized from a population of N

2 each. Such area is 2 · �(�µ0

�0
), where � is

the cumulative distribution function of the standard normal distribution (see Figure 7(b)). Therefore,

20

the proportion of misclassifications is e(f) = N
2 · 2 · �(�µ0

�0
) · 1

N = �(�µ0

�0
). As � is a cumulative

function, it is monotonically increasing with respect to its argument.

The classification error of f can be reduced by performing a step of message passing on the graph,
which utilizes the community information to further separate the two classes. We shall consider a
single round of sum aggregation as an example.

0�µ0 µ0

xi

D
en

si
ty

N (�µ0,�
2
0) N (µ0,�

2
0)

(a) The distribution of features from both clusters
before training. The area in purple corresponds to
nodes wrongly classified by the decision boundary
x = 0.

0�µ0

�0

xi

D
en

si
ty

N (0, 1)

(b) The cumulative distribution function at x = �1
of N (µ0,�

2
0) is equal to the cumulative distribution

function at x = �µ0
�0

of the standard normal distribu-
tion N (0, 1), which is �(�µ0

�0
). The purple area of

Figure 7(a) is two times this quantity.

Any node has an expected Ep = p ·
�
N
2 � 1

�
intra-class neighbors, plus itself, and an expected

Eq = q · N
2 inter-class neighbors. In the proof A.3 we compute the same quantity with neighbour

distributions instead, for a more fine-grained approximation. The hidden state of a class-1 node i after
a step of sum aggregation is therefore the sum of Ep+1 random variables ⇠ N (µ0,�

2
0) and Eq random

variables ⇠ N (�µ0,�
2
0). This follows another normal distribution with mean µ1 := µ0 ·(1+Ep�Eq)

and variance �2
1 := �

2
0 · (1 + Ep + Eq). Conversely, the hidden state of a class-0 node i follows a

normal distribution of mean �µ1 and the same variance �2
1 . The decision boundary of a perfect

classifier is still at x = 0, but the average proportion of misclassified nodes is now �(�µ1

�1
), which

depends on p and q. Specifically, it tends to be monotonically decreasing with respect to p; this means
that the higher the community structure, the more accurate the classifier can be, because there is more
information to utilize.

Let us take µ0 = 1 and �0 = 1 to simplify the calculations. We need to check that @
@p

⇣
�µ1

�1

⌘
< 0.

For N > 2 and p, q 2 (0, 1):

µ1 = 1 · (1 + p

✓
N

2
� 1

◆
� q · N

2
) = 1� p+

N

2
· (p� q)

�
2
1 = 1 · (1 + p

✓
N

2
� 1

◆
+ q · N

2
) = 1� p+

N

2
· (p+ q)

�µ1

�1
= �

1� p+ N
2 · (p� q)

q
1� p+ N

2 · (p+ q)

@

@p

✓
�µ1

�1

◆
= � (N � 2)((N � 2)p+ 3Nq + 2)

2
p
2 ((N � 2)p+Nq + 2)

3
2

< 0

() (N � 2)((N � 2)p+ 3Nq + 2) > 0

On the other side, @
@q

⇣
�µ1

�1

⌘
> 0.

@

@q

✓
�µ1

�1

◆
=

N(6 + 3(N � 2)p+Nq)

2
p
2(2 + (N � 2)p+Nq)

3
2

> 0 () N(6 + 3(N � 2)p+Nq) > 0

21

This proves that, by reducing the community structure (either by decreasing p or increasing q), then
the quantity �µ1

�1
increases, so the expected proportion of misclassified nodes e(f) = �

⇣
�µ1

�1

⌘
also

increases. In consequence, it harms the performance of classifier f .

The graph’s information provides a better separation between the two classes if the intra-class edge
probability is high enough. From this we can conclude that reducing the intra-class edge probability
is not a good strategy to improve the classification performance for any model on the graph.

A.3 Proof of Theorem 3

Proof. We consider another SBM with 2 classes and N
2 nodes in each class, with intra-class edge

probability p and inter-class edge probability q. Each node i 2 {0, . . . , N � 1} has again one
feature, xi, aligned with its class label `i following a normal distribution: N (�µ0,�

2
0) for class 0

and N (µ0,�
2
0) for class 1. However, now `i corresponds to its community with a fixed probability

—recovering Theorem 2 when = 1.

What is the probability of any node i such that, after a round of sum aggregation, its modified
representation x

0
i is now misclassified (M)? As the two classes are symmetric:

P (M) = P (M,L0) + P (M,L1)

= P (L0)P (M |L0) + P (L1)P (M |L1)

=
1

2
P (M |L0) +

1

2
P (M |L1)

= P (M |L0)

Then the question becomes the following: what is the probability of a node with label L0 being
misclassified? It depends whether it belongs to community C0 or C1.

P (M |L0) = P (M,C0|L0) + P (M,C1|L0)

= P (C0|L0)P (M |L0, C0) + P (C1|L0)P (M |L0, C1)

= P (M |L0, C0) + (1�)P (M |L0, C1)

P (M |L0, C0) = P (X 0
(L0,C0)

> 0). We now need to calculate what is the predicted label of a
(L0, C0) node after a sum aggregation round. For this we need the distribution of its neighbours. We
consider the node to have a self loop, as it uses its own feature too.

• The number of nodes (L0, C0) (that are not node i) follows a binomial distribution N0 ⇠
B(N2 �1,). However, for easiness of proof we will approximate it by a normal distribution,
which is appropriate for N large enough: N0 ⇠ N ((N2 � 1) , (N2 � 1) (1 �)). The
amount of them connected to node i follows a conditional binomial distribution H00 ⇠
B(n0, p) | N0 = n0, which we again approximate by H00 ⇠ N (n0p, n0p(1� p)) | N0 =
n0.

• The number of nodes (L0, C1) that are connected to node i follows H01 ⇠ B(N2 � 1 �
n0, q) |N0 = n0, approximated by H01 ⇠ N ((N2 �1�n0)q, (

N
2 �1�n0)q(1�q)) |N0 =

n0.

• Since H00 and H01 are conditionally independent given N0 = n0, their sum H0 = H00 +
H01 also follows a normal distribution with parameters given by the sum of their means and
variances. Thus, the number of total L0 nodes connected to node i (except itself) follows
H0 ⇠ N (n0p+ (N2 � 1� n0)q, n0p(1� p) + (N2 � 1� n0)q(1� q)) | N0 = n0. We are
going to get rid of the dependency of N0 by estimating it by a normal distribution with the

22

mean and variance of the marginal distribution of H0:

E[H0] = E[E[H0|N0]] = E[N0]p+

✓
N

2
� 1� E[N0]

◆
q

=

✓
N

2
� 1

◆
 p+

✓
N

2
� 1�

✓
N

2
� 1

◆

◆
q

=

✓
N

2
� 1

◆
(p + q(1�))

Var[H0] = E[Var(H0|N0)] + Var(E[H0|N0])

= E[N0]p(1� p) +

✓
N

2
� 1� E[N0]

◆
q(1� q)

+ Var
✓
N0(p� q) +

✓
N

2
� 1

◆
q

◆

=

✓
N

2
� 1

◆
 p(1� p) +

✓
N

2
� 1�

✓
N

2
� 1

◆

◆
q(1� q)

+ (p� q)2
✓
N

2
� 1

◆
 (1�)

=

✓
N

2
� 1

◆
(p(1� p) + (1�)q(1� q) + (p� q)2 (1�))

• The number of nodes (L1, C1) follows N1 ⇠ B(N2 ,), approximated by N1 ⇠
N (N2 ,

N
2 (1 �)). The amount of them connected to node i follows H11 ⇠

B(n1, q) | N1 = n1, approximated by H11 ⇠ N (n1q, n1q(1� q)) | N1 = n1.

• The number of nodes (L1, C0) that are connected to node i follows H10 ⇠ B(N2 �
n1, p) | N1 = n1, approximated by H10 ⇠ N ((N2 � n1)p, (

N
2 � n1)p(1� p)) | N1 = n1.

• Similarly to L0, the number of total L1 nodes connected to node i follows H1 ⇠ N (n1q +
(N2 � n1)p, n1q(1� q) + (N2 � n1)p(1� p)) | N1 = n1. We will estimate it by a normal
distribution with its mean and variance:

E[H1] = E[E[H1|N1]] = E[N1]q + (
N

2
� E[N1])p

=
N

2
 q +

✓
N

2
� N

2

◆
p

=
N

2
(p(1�) + q)

Var[H1] = E[Var(H1|N1)] + Var(E[H1|N1])

= E[N1]q(1� q) +

✓
N

2
� E[N1]

◆
p(1� p) + Var

✓
N1(q � p) +

N

2
p

◆

=
N

2
 q(1� q) +

✓
N

2
� N

2

◆
p(1� p) + (p� q)2

N

2
 (1�)

=
N

2
(q(1� q) + (1�)p(1� p) + (p� q)2 (1�))

The representation of node i after one step of sum aggregation is the summation of H0 + 1 (indepen-
dent) normal distributions ⇠ N (�µ0,�

2
0) and H1 (independent) normal distributions ⇠ N (µ0,�

2
0).

Therefore:

X
0
(L0,C0)

⇠ N (�µ0(1 + h0 � h1), �
2
0(1 + h0 + h1)) | H0 = h0, H1 = h1

23

Again calculating its mean and variance:

E[X 0
(L0,C0)

] = E[E[X 0
(L0,C0)

|H0, H1]] = �µ0(1 + E[H0]� E[H1])

= �µ0

✓
1 +

✓
N

2
� 1

◆
(p + q(1�))� N

2
(p(1�) + q)

◆

Var[X 0
(L0,C0)

] = E[Var(X 0
(L0,C0)

|H0, H1)] + Var(E[X 0
(L0,C0)

|H0, H1])

= �
2
0(1 + E[H0] + E[H1]) + µ

2
0(Var(H0) + Var(H1))

= �
2
0

✓
1 +

✓
N

2
� 1

◆
(p + q(1�)) +

N

2
(p(1�) + q)

◆

+ µ
2
0

✓✓
N

2
� 1

◆
(p(1� p) + (1�)q(1� q) + (p� q)2 (1�))

+
N

2
(q(1� q) + (1�)p(1� p) + (p� q)2 (1�))

◆

For a more clear analysis of this formula, we take µ0 = 1,�0 = 1 and N large enough:

E[X 0
(L0,C0)

] ⇡ �N

2
(p + q(1�)� p(1�)� q) = �N

2
(2 � 1)(p� q)

Var[X 0
(L0,C0)

] ⇡ N

2

✓
p + q(1�) + p(1�) + q + 2(p� q)2 (1�)

+ p(1� p) + (1�)q(1� q) + q(1� q) + (1�)p(1� p)

◆

=
N

2
(p+ q + p(1� p) + q(1� q) + 2(p� q)2 (1�))

Finally, we have P (X 0
(L0,C0)

> 0) ⇡

�

0

@ �N
2 (2 � 1)(p� q)

q
N
2 (p+ q + p(1� p) + q(1� q) + 2(p� q)2 (1�))

1

A

For P (M |L0, C1) = P (X 0
(L0,C1)

> 0), the calculation of the predicted label of a (L0, C1) node
follows exactly the same steps, but exchanging p and q, as the probabilities for nodes to be connected
to node i are now exactly of the opposite community. So we have P (X 0

(L0,C1)
> 0) ⇡

�

0

@ �N
2 (2 � 1)(q � p)

q
N
2 (p+ q + p(1� p) + q(1� q) + 2(p� q)2 (1�))

1

A = 1� P (X 0
(L0,C0)

> 0)

And P (M) ⇡ P (X 0
(L0,C0)

> 0) + (1 �)(1 � P (X 0
(L0,C0)

> 0)) = (1 �) + (2 �
1)P (X 0

(L0,C0)
> 0).

B Additional results

In Table 5 we compare our results with an additional baseline [5] (DHGR), which uses a feature
similarity based rewiring for heterophilic graphs. As there was no code available to reproduce the
results, we take the results reported from the paper.

C Effect on homophily

Graph neural networks provably perform better on homophilic graphs and some good-heterophilic

graphs [39]. We investigate the effect our one-shot rewiring strategy (GCN.GCN) has on Edge label

24

Table 4: Node classification on 2 homophilic and 2 heterophilic graphs using Iterative SoLAR.

GCN.GCN-Delete GCN.GCN-Add

Dataset Cora Citeseer Chameleon Squirrel Cora Citeseer Chameleon Squirrel

Iterations Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

0 84.13±0.32 72.58±1.85 29.31±2.09 26.44±0.28 84.13±0.32 72.58±1.85 29.31±2.09 26.44±0.28
1 86.45±0.58 77.0±0.31 31.31±1.01 31.31±0.32 92.26±0.00 76.82±0.16 31.52±0.17 34.14±0.31
2 85.94±0.48 78.9±0.46 31.1±0.77 32.06±0.16 88.39±0.00 79.76±0.79 31.79±0.14 30.97±0.40
3 89.16±0.95 77.51±0.57 35.66±0.35 33.20±1.12 84.26±0.52 77.22±0.65 30.62±0.51 26.97±0.86
4 86.19±1.85 73.86±1.6 34.62±2.39 31.76±0.82 81.94±0.00 78.2±2.15 25.52±1.23 30.14±0.35

GAT.GAT-Delete GAT.GAT-Add

0 83.48±1.20 77.55±2.65 35.66±3.48 35.17±1.94 83.48±1.20 77.55±2.65 35.66±3.48 35.17±1.94
1 88.65±0.66 81.14±0.16 33.03±1.16 38.28±0.98 88.26±0.63 76.33±0.26 27.93±0.22 38.55±1.42
2 88.77±1.12 76.16±2.23 34.41±0.26 40.34±0.79 83.87±0.41 77.63±0.83 30.14±0.41 41.45±1.20
3 88.65±1.85 76.98±0.76 36.83±1.67 35.45±3.03 87.35±0.66 77.96±0.46 34.97±0.83 40.83±2.53
4 89.94±1.45 73.96±2.68 35.03±0.56 39.24±3.18 85.94±0.63 73.14±0.79 26.41±0.60 41.17±1.75

informativeness (ELI) and adjusted homophily score proposed in [47] and report the Normalized
Mutual Information between the node ground truth labels and community membership labels after
performing modularity maximization [16] on the rewired graph in §C. Evidently, our rewiring strategy
improves the homophily score, as well as the edge label informativeness (denoted by ELI), which is
also found to have high correlation to GNN performance [47]. We also better align the node ground
truth labels to community labels, as we delete inter-community edges (denoted by NMI).

(c) ELI, Homophily, NMI for Cora and Citeseer
with GCN.GCN.

(d) ELI, Homophily, NMI for Chameleon and
Squirrel with GCN.GCN.

Figure 7: The effect of one-shot rewiring on ELI, homophily and NMI on Cora, Citeseer, Chameleon
and Squirrel datasets.

C.1 Iterative SoLAR

As outlined in Figure 1, we can have an iterative rewiring procedure that constantly updates its
predictions till certain number of edges are modified. In Table 4, we present results on Cora [40],
Citeseer [54], Chameleon and Squirrel [48] using the iterative version of rewiring for combinations
GCN.GCN and GATv2.GATv2 both deletions and additions. The iteration 0 refers to the baseline,
where no rewiring is performed. Since it is more computationally expensive to perform iterative
rewiring on several splits of the data, we instead divide the datasets into one 80/20 split for train/test
nodes respectively, and report the final test accuracy averaged over 5 random seeds. The hidden
dimension used is {32,128}. The learning rate is {0.01, 0.001} with no dropout and weight decay.
The hyperparameters obtained from the one-shot pruning were applicable here as well. We can see
from the table that we can get significant boost in the accuracy (for instance, Cora 92.26%) by doing
iterative rewiring, as the proxy labels get iteratively better. Our experiments indicate that usually
2-3 iterations of edge modifications should suffice to get a good performance. We also visualize a
T-SNE plot in Figure 8 of the node embeddings after training on the original graph and the rewired

25

graph (GCN .GCN) on Cora and Squirrel datasets. From the figure, we can see that the classes
are more separable in the embedding space on the rewired graph, the class separability is more
evident in a homophilic graph like Cora (Figure 8(b) than in a heterophilic graph like Squirrel (8(d)),
highlighting the fact that GNNs are usually more useful in homophilic settings and if the surrogate
model gives noisy labels for rewiring, the performance on the downstream is also affected. These
plots further substantiate our claims about task-community alignment and how our rewiring can effect
these changes.

(a) GCN trained on the original Cora
graph.

(b) GCN.GCN trained on Cora with 1500
inter-class edge deletions.

(c) GCN trained on the original Squirrel
graph.

(d) GCN.GCN trained on Squirrel with
20K inter-class edge deletions.

Figure 8: We plot T-SNE for Cora and Squirrel datasets after training a GCN on the original graph
and the rewired graph.

D Training details

We use PyTorch-Geometric and DGL library for all our experiments. We use a 2-layered GCN
[34] and GATv2 [8] with {8, 16} attention heads. For datasets Cora, Citeseer, Pubmed, Cornell,
Texas, Wisconsin, Chameleon, Squirrel, Actor, CS, Physics and Photo the final test accuracy is
reported averaged over 100 splits, run for 100 epochs. We use the split mechanism introduced in
[56]. The weight decay and dropout are set to 0. The hidden dimension sizes we experimented
with are {32,128,512} and learning rate {0.01,0.001}. The heterophilic graphs (Cornell, Texas,
Wisconsin, Chameleon, Squirrel and Actor) are taken from [48]. For experiments on Roman-empire
and Amazon-ratings, we use the code base provided by [48], where the datasets are split into 50/25/25
for train/test/validation respectively. The accuracy is averaged over 10 runs run for 1000 epochs.
We use a 5-layered GCN and GATv2 for these experiments, which are further augmented with skip
connections, layernorm [3] and batchnorm [30] to facilitate training them better. For the Penn94

26

Table 5: Node classification on heterophilic graphs using one-shot rewiring.

Method Cornell Texas Wisconsin Chameleon Squirrel Actor

GCN 68.31±8.13 73.47±10.13 66.14±9.23 54.64±6.94 43.25±6.32 28.26±3.22
GAT 86.84±9.78 89.01±10.43 87.56±9.20 61.79±10.20 45.71±5.12 29.41±2.98

GCN+FoSR 71.64±9.80 73.93±10.23 65.85±7.73 54.40±6.58 42.80±6.40 28.66±3.21
GAT+FoSR 76.12±6.51 78.15±7.81 74.08±9.01 46.48 ± 4.97 47.40±7.17 27.45±3.61

GCN+Proxydelmin 81.94±7.96 83.46±10.90 70.63±7.68 53.64±6.00 41.26±5.35 28.58±2.93
GAT+Proxydelmin 85.40±7.64 83.44±9.52 79.78±11.26 66.15±12.01 45.02±5.13 32.37±4.36

GCN+DHGR 67.38±5.33 81.78±0.89 76.47±3.62 70.83±2.03 67.15±1.43 36.29±0.12
GAT+DHGR 70.09±6.77 83.78±3.37 73.20±4.89 72.11±2.87 62.37±1.78 34.71±0.48

GCN.GCN+Delete 68.35±8.54 74.12±9.89 67.85±7.14 57.19 ± 6.45 44.50±6.29 29.25±3.50
GCN.GCN+Add 69.42±8.93 74.20±10.26 68.51±7.20 56.43 ± 6.16 44.04±6.34 28.16±3.22

GAT.GAT+Delete 87.40±9.89 90.14±10.64 88.32±9.08 68.89±11.50 49.10±5.59 30.31±4.29
GAT.GAT+Add 87.12±9.59 87.97±10.95 87.76±9.57 66.35±11.18 46.44±6.00 29.46±4.67

dataset introduced in [38], we use hidden dimension size of 32, learning rate set to 0.01, weight decay
1e� 3 and also batchnorm. All the experiments were done on 2 V100 GPUs. The hyperparameters
used for our experiments are provided in the tables below. The runtime is provided in seconds for
one-shot rewiring. The statistics for the datasets used is given in Table 6. Our code is available.

Table 6: Statistics of the graphs used. We use the largest connected component for all our experiments.

Dataset #Nodes #Edges
Cora 2,708 10,138

Citeseer 3,327 7,358
Pubmed 19,717 88,648
Cornell 183 277
Texas 183 279

Wisconsin 251 450
Chameleon 890 8,854

Squirrel 2,223 57,850
Actor 7,600 26,659

CS 18,333 1,63,788
Physics 34,493 4,95,924
Photo 7,650 2,38,162

Roman-empire 22,662 32,927
Amazon-ratings 24,492 93,050

Penn94 41,554 13,62,229

Table 7: Hyperparameters for GCN.GCN+Del
Dataset EdgesDeleted LR HiddenDimension Runtime

Cora 1500 0.01 32 71.43
Citeseer 1500 0.01 32 84.08
Pubmed 10000 0.01 32 90.79
Cornell 100 0.001 128 86.76
Texas 100 0.001 128 73.94

Wisconsin 100 0.001 128 77.23
Chameleon 5400 0.001 128 76.82

Squirrel 310000 0.001 128 78.70
Actor 16000 0.001 128 80.12

CS 22000 0.01 128 200.90
Physics 30000 0.01 128 412.47
Photo 35000 0.01 512 263.11

Table 8: Hyperparameters for GCN.GCN+Add
Dataset EdgesAdded LR HiddenDimension Runtime

Cora 6929 0.01 32 89.43
Citeseer 7168 0.01 32 70.88
Pubmed 352 0.01 32 94.07
Cornell 55 0.001 128 88.76
Texas 54 0.001 128 74.33

Wisconsin 41 0.001 128 86.68
Chameleon 4088 0.001 128 70.35

Squirrel 12349 0.001 128 74.85
Actor 12215 0.001 128 78.38

CS 8680 0.01 32 129.36
Physics 45991 0.01 32 351.85
Photo 26846 0.01 32 108.79

27

https://anonymous.4open.science/r/SoLAR5296/README.md

Table 9: Hyperparameters for GAT.GAT+Add
Dataset EdgesAdded LR HiddenDimension Runtime

Cora 9711 0.001 32 149.73
Citeseer 11996 0.001 32 192.35
Pubmed 17647 0.001 32 594.85
Cornell 37 0.001 32 134.70
Texas 55 0.001 32 123.80

Wisconsin 49 0.001 32 135.06
Chameleon 4167 0.001 32 105.65

Squirrel 20754 0.001 32 313.19
Actor 30251 0.001 32 388.99

CS 27592 0.001 32 2292.85
Physics 46700 0.001 32 1761.90
Photo 27713 0.01 32 456.02

Table 10: Hyperparameters for GAT.GAT+Del
Dataset EdgesDeleted LR HiddenDimension Runtime

Cora 1700 0.001 32 105.27
Citeseer 1500 0.001 32 116.28
Pubmed 14126 0.001 32 395.73
Cornell 120 0.001 32 100.89
Texas 120 0.001 32 131.33

Wisconsin 120 0.001 32 131.69
Chameleon 6000 0.001 32 169.09

Squirrel 35000 0.001 32 212.64
Actor 30000 0.001 32 139.54

CS 30000 0.001 32 1579.53
Physics 30000 0.001 32 3766.81
Photo 40264 0.001 32 450.34

28

	Introduction
	Related work
	Conceptual analysis
	Spectral rewiring affects community strength
	Varying the amount of task-community alignment
	Experiments on SBM for different p and q
	Analysis on real-world datasets

	SoLAR: Surrogate Label Aware Rewiring
	Experiments
	Discussion
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Additional results
	Effect on homophily
	Iterative SoLAR

	Training details

