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Graph Data

1 Graph Structured Data provide powerful representation.
2 Graphs are ubiquitous and can model heterogeneous data from

varied fields -

Chemistry:
Molecules

Biology: Protein
Interaction Network

Social Network
(Facebook-Ego)

Protein interaction : http://jeswcollins.github.io/PPI/
Fb-Ego : https://github.com/AnilOsmanTur/ComplexNetworksProjects
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How to learn Graph Structure?

1 Real-world Graphs often exhibit properties such as -

Scale-Free
(Barabási-Albert
Graph)

Hierarchical
Anatomy

Causality (Citation
Network)

2 The functional/semantic similarity between entities/nodes should be
preserved by the embedding space [Nickel and Kiela(2017)].
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Node Embeddings in Euclidean Space

1 Map graph nodes v ∈ V to low dimensional vector zv ∈ Rn.

2 Trying to embed graphs in Euclidean space - We quickly run out of
space!

Note that, for increasing level of the binary tree, unrelated nodes are forced together,
distorting the original tree structure.
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Hyperbolic Space (Hn)

1 Hyperbolic space offers exciting alternative to Euclidean space
[Nickel and Kiela(2017)].

2 Hyperbolic space - non-Euclidean, constant negative curvature.

Datasets with hierarchical structure can be embedded in low-dimensional hyperbolic
space without distortions.

3 The space grows exponentially, the hierarchical nature of the data is
preserved.
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When should you use Hyperbolic Space?

1 [Gromov(1987)] introduced the notion of hyperbolicity (δ), to
measure the Tree-likeliness of a metric space.

2 Mathematically,
Let {a, b, c, d} be the vertices of the graph G(V, E). and let
(S = {S1 = d⟨a, b⟩ + d⟨d, c⟩}, {S2 = d⟨a, c⟩, d⟨b, d⟩}, and
{S3 = d⟨a, d⟩ + d⟨b, c⟩}). The δ(a, b, c, d) is given by

δ(a, b, c, d) = 1
2 max

{a,b,c,d}∈V(G)
hyp(a, b, c, d) (1)

where, hyp(a, b, c, d) = Difference of two largest values in S.
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δ− Hyperbolicity and Graph Aristocracy

1 A graph G = (V, E) can be viewed as a metric space with d⟨·,·⟩
measuring the (geodesic) distance between vertices.

2 For δ ≤ 0 =⇒ Hyperbolic also =⇒ Aristocratic.
3 Graph Aristocracy - Small set of vertices controlling the overall

aspects of the network
[Borassi et al.(2015)Borassi, Chessa, and Caldarelli].

A subset of WordNet-Noun hierarchy [Miller and Fellbaum(1998)] with δ = 0.183
(Left). A random DAG with δ = 6.5 (Right.)
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How Robust are Node Embeddings?

1 Adversarial attacks - Deliberate and Random Perturbations injected
into the data, that affects the model’s performance.

Attack Model [Bojchevski and Günnemann(2019)]
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Adversarial Perturbations ruin δ− hyperbolicity

Our Contribution
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Adversarial Perturbations ruin δ− hyperbolicity

We compute δ-hyperbolicity of standard graph data sets before and after introducing
adversarial perturbations. Its evident from the Table below that hyperbolicity increases for
random adversarial attacks rendering embedding in hyperbolic space less effective.

Dataset # of Edge Flips δbefore δafter
Cora [McCallum et al.(2000)McCallum, Nigam, Rennie, and Seymore] 1000 2.0 2.5

Citeseer [Giles et al.(1998)Giles, Bollacker, and Lawrence] 1000 2.5 3.0
Polblogs [Adamic and Glance(2005)] 1000 1.0 1.5

Visualization of standard datasets before (first row) and after introducing
adversarial edge flips(second row).
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How do we navigate adversarial vulnerabilities?

1 Lorentzian manifolds are natural embedding spaces for data
exhibiting properties such as hierarchy and Causality.

2 Lorentzian Manifold : A Lorentzian manifold (L, η) is a
pseudo-Riemannian manifold equipped with metric signature
{−, +, +, +, ...}.

Lorentzian Inner Product
⟨x, y⟩L = −x0y0 + x1y1 + x2y2 + ...

Tangent Space and Vectors
Tangent vectors v ∈ tangent space TxL can be
classified as -

• Time-like, if η⟨x, x⟩L < 0
• Light-like, if η⟨x, x⟩L = 0
• Space-like, if η⟨x, x⟩L > 0
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Lorentzian Manifolds and Posets

1 Let C = {ci}m
i=1, be the set of concepts. Inferring concept

hierarchies involves defining a partial order set (C, ⪯) over the
elements of C - [Nickel and Kiela(2018)].

2 Surprisingly, a Lorentz manifold (L, η) equipped with a Causal
structure also forms a partial ordered set (L, ≺) - [Zeeman(1964)].

Minkowski SpaceAdarsh Jamadandi and Uma Mudenagudi DiffGeo4DL, NeurIPS 2020 November 13, 2020 12 / 20
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Node Embeddings in Lorentzian Manifolds

1 We choose the simplest Lorentzian manifold - Minkowski Space M
equipped with metric -

dMi,j = −c2(x0
i − x0

j )2 +
d∑

k=1
(xk

i − xk
j )2 (2)

2 The Minkowski spacetime (M) consists of d spatial dimensions and
1 time dimension. {x0

i , x0
j } represent the time co-ordinates and

{xk
i , xk

j } represent spatial co-ordinates and c is the speed of light,
which indicates the speed of flow of information in this case.

3 We embed graphs using Lorentzian-MDS proposed by authors in
[Clough and Evans(2017)].
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Lorentzian-Multidimensional Scaling (MDS)

1 Given points X = {x1, x2, x3, ...xn} ∈ Md, expressed as a matrix
X ∈ Rn×r.

2 We have access to the pair-wise distances di,j = dMi,j and not X.

Lorentzian-MDS
Recover X = {x1, x2, x3, ...xn}, by
observing di,j.
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Results

1 We compare by embedding popular graph datasets - Citeseer,
PolBlogs and Cora datasets in both Poincaré disk model and
Minkowski space.

Before attack. AUC = 0.63. After attack. AUC = 0.62.
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Results

Before attack. AUC = 0.81. After attack. AUC = 0.69.
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Results

Before attack. AUC = 0.74. After attack. AUC = 0.64.
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Results

Before attack. AUC = 0.74. After attack. AUC = 0.64.
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Results

Lorentzian-MDS algorithm breaks down when the embedding space is chosen to be the
Poincaré ball model.
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Summary

1 We study adversarial perturbations in the context of geometric
graph learning for the first time.

2 Empirically, we show that unsupervised embeddings in hyperbolic
space are susceptible to adversarial attacks, making the embedding
space less effective.

3 We quantify the inefficacy of hyperbolic spaces by measuring the
Gromov hyperbolicity.

4 We advocate for the utility of Lorentzian manifolds for learning
hierarchical data, as they are more robust to adversarial
perturbations.
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