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A Brief Primer on 
Graph Neural 
Networks
Why Graphs? Deconstructing 
Graphs and Deep Learning on 
Graphs.
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Why Graphs?

• Graphs are everywhere!  
• Social Networks, Biological Networks, Molecules and even High-

energy particle interactions can be modelled as graphs.

Social Networks Chemical Molecules High Energy Physics
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Deconstructing Graphs

• Graphs can be of two types - homophilic and heterophilic. 
•Depends on whether the neighborhood nodes have similar 

features/labels.

Heterophilic GraphsHomophilic Graphs
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• Connectivity information - Adjacency Matrix . 

•Degree Matrix . 

• Laplacian Matrix  

• Symmetric Normalized Laplacian 

(A)
(D)

(ℒ = D − A)
(ℒG = D−1/2ℒD−1/2)

Deconstructing Graphs

v1

v2

v3

v4

D =

3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

A =

v1 v2 v3 v4

v1 0 1 1 1
v2 1 0 1 0
v3 1 1 0 1
v4 1 0 1 0
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• Given  a graph , with  
vertices and edges and associated 
node features, . 

•Node prediction - predict labels for the 
nodes . 

• Graph prediction - predict a global label 
  for the entire graph.

G = (V, E) |V |
|E |

xvi
∈ X

Yvi

YG

Deep Learning on Graphs

v1

v2

v3

v4 xv11xv12xv13
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• Regular deep learning algorithms don’t work on GNNs. Why? 
•No fixed ordering. Complex topological structure.

Deep Learning on Graphs

VS.
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Message Passing

m(l)
u = MSG(l)(hu

(l−1))
u ∈ {𝒩(v) ∪ v}

Compute Messages

h(l)
v = AGG(l) ({ml

u, u ∈ 𝒩(v)}, m(l)
v )

Aggregate Messages

Credits: Stanford CS224W.

v1

v2

v3

u1

v1

v2

v3
u1

https://web.stanford.edu/class/cs224w/slides/06-theory.pdf
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Graph Representation Learning

Embedding Space

Final Graph level representation 

v1

v2

v3

u1
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Node Classification Real-World Example

•Node prediction - predict 
labels for the nodes .Yvi
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Graph Classification Real-World Example

• Graph prediction - predict a global 
label   for the entire graph.YG
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TL;DR

• Graphs are everywhere! 

•Deep Learning on Graphs  Message Passing Paradigm.→



Factors Affecting 
Message Passing
Over-squashing and Over-
smoothing.
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Over-squashing

• Presence of topological bottlenecks in the input graph can 
cause information congestion. 
• GNN fails to model long-range interactions.

Bottleneck edge

Messages are “squashed”.

G = (V, E)
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• Lets look at the graph spectrum. 
• Smaller spectral gap indicates presence of bottlenecks.

Characterizing Over-squashing

ℒG = D−1/2ℒD−1/2

G = (V, E)
{λ0 < λ1 < λ2, . . . λn}

Spectral Gap

O(n3)
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• Rewire the graph based on some criterion. 
•What kind of criterion?

Resolving Over-squashing

• Topping et al. ICLR, 2022 
propose Stochastic Discrete 
Ricci Flow (SDRF) to rewire the 
graph. 
• Computationally very 

expensive!

• Karhadkar et al. ICLR, 2023 
propose a first order proxy of 
spectral gap (FoSR) to add edges 
to the graph to address over-
squashing. 

https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=3YjQfCLdrzz
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• Add edges which maximize the spectral gap. 

• Karhadkar et al. ICLR, 2023 propose a first order proxy of spectral gap 
(FoSR) 

•
2xuxv

(1 + du)(1 + dv))

Adding Edges to Mitigate Over-squashing

Spectral Gap
Over-squashing

https://openreview.net/forum?id=3YjQfCLdrzz
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But causes Over-smoothing
• Add edges which maximize the spectral gap. 
• But will lead to over-smoothing! 
•Node representations will become increasingly similar.

Aggregation Steps

Spectral Gap Over-squashing Over-smoothing
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TL;DR

• Information congestion  Low spectral gap Over-squashing. 

• Add edges  Increase spectral gap  Mitigate over-squashing. 

• But adding edges  makes node representations same  Over-
smoothing!

→ →
→ →

→ →



Braess Paradox
How a counter-intuitive 
phenomenon allows to alleviate 
over-squashing and over-
smoothing!
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Adding an extra road  
increases commute time!

Braess Paradox to the Rescue!
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Braess Paradox to the Rescue!

•Our first contribution - Introduce Braess Paradox in the context of 
Graph Neural Networks. 
• Show edge deletions can also increase spectral gap!
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Spectral Gap Maximization via Edge Deletions

Over-squashing
Spectral gap

Over-smoothing
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Real-world Graphs
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How good is the proxy?

• Use Eldan’s criterion to prune the graph — Computationally expensive. 

• Faster spectral gap approximation using Matrix Perturbation Theory. 

• ̂λ ≈ λinit + Δwu,v(( fu − fv)2 − λinit( f 2
u + f 2

v ))
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How fast is the proxy?

• Faster spectral gap approximation using Matrix Perturbation 
Theory.  

• ̂λ ≈ λinit + Δwu,v(( fu − fv)2 − λinit( f 2
u + f 2

v ))
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Experiments

Credit : Long Range Graph Benchmark (LRGB)

https://arxiv.org/pdf/2206.08164
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Experiments
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• Input graphs can have topological bottlenecks. Results in over-
squashing. 
• Adding edges to resolve bottlenecks results in over-smoothing. 
• Edge deletions can also increase spectral gap because of Braess 

Paradox. 
• Allows for mitigating over-squashing without making over-

smoothing worse.

Summary



Finding 
Memo(rization) in 
Graph Neural 
Networks
Adarsh Jamadandi*, Jing Xu, Adam 
Dziedzic and Franziska Boenisch. 
Pre-print 2025 (Under-review).
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Deep Neural Networks Fit Random Labels

+

Credits: Deep Learning requires rethinking generalization.

https://arxiv.org/pdf/1611.03530
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• Atypical data points in the form 
of mislabeled samples, visually 
difficult examples are more 
prone to memorization. 

• Usually occur at the tail of the 
distribution.

Deep Neural Networks Memorize Atypical Examples

Credits: Does Learning Require Memorization? A Short Tale about a Long Tail

https://arxiv.org/abs/1906.05271
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• Train model  on  and train model  on 
. 

• Compare the behavior of the two models. 
•Memorization score defined as

f S g
S∖i

Definition of Memorization

Credits: Does Learning Require Memorization? A Short Tale about a Long Tail

S = (xi, yi)
S∖i

ℳ(xi) = 𝔼
f∼𝒯(S)

[Pr[ f(xi) = yi]] − 𝔼
g∼𝒯(S∖xi)

[Pr[g(xi) = yi]]

f g

https://arxiv.org/abs/1906.05271
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• Problem setting: Semi-
supervised node 
classification. 
•Divide the nodes into 

Shared ( ), Candidate ( ), 
Independent ( ) and Extra 
nodes ( ). 

• Train model   
and model  
respectively.

SS SC
SI

SE

f = SS ∪ SC
g = SS ∪ SI

Measuring Memorization in GNNs

Extra nodes
from test
dataset
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• Lets check if GNNs also show memorization by applying it to a 
toy dataset. 
•We will measure memorization by comparing the behavior of 

models  and  by 
 

• A node is said to be memorized if  and we will 
measure memorization rate as 

f g
ℳ(vi) = 𝔼

f∼𝒯(S)
[Pr[ f(vi) = yi]] − 𝔼

g∼𝒯(S∖vi)
[Pr[g(vi) = yi]]

ℳ(vi) > 0.5

MR( % ) =
1

|𝒮 | ∑
vi∈S

𝕀(ℳ(vi) > τ) × 100

Does it work?
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Does it work?
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TL;DR

•Deep neural networks can fit random labels  100% Training 
Accuracy! 
•Deep neural networks memorize atypical examples. 

• GNNs also exhibit similar behavior  memorize node labels!

→

→



Uncovering 
Mechanisms for 
Memorization

Why is it difficult to explain 
memorization in GNNs?
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• Explaining memorization in GNNs is highly non-trivial. 
•We need to account for various factors such as graph homophily, 

node features, label/feature distribution of neighbours, the GNN 
training dynamics!

Explaining Memorization in GNNs
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• As graph homophily increases, the rate of memorization decreases.

Homophily  Memorization ↑ ↓



/5343

•Neural Tangent Kernel (NTK) - a theoretical tool to understand training 
dynamics of neural networks (NNs). 

• Consider a NN with width .m

Detour: Neural Tangent Kernel

Credits: Understanding the Neural Tangent Kernel

https://www.eigentales.com/NTK/


/5344

• As , the weights barely change. 

• The entire NN can be seen as a linear function!

m → ∞

Detour: Neural Tangent Kernel

Credits: Understanding the Neural Tangent Kernel

https://www.eigentales.com/NTK/
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• GNTK - Θl
t(x, x̃; A) = ∇W f(x; A)T ∇W f(x̃; A)

Node Level Graph Neural Tangent Kernel

Credits: How Graph Neural Networks Learn: Lessons from Training Dynamics

x

x̃

W

W

https://arxiv.org/abs/2310.05105
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•We will track three matrices - 

• The alignment between the adjacency matrix  and the optimal 
kernel ( ) -  (homophily level) 

• The Kernel-Target Alignment -  (how well a GNN 
generalizes) 

• The Kernel-Graph Alignment -  (implicit bias of GNN to 
leverage the graph structure)

A
Θ* = ȲȲT 𝒜(A, Θ*)

𝒜(Θt, Θ*)

𝒜(Θt, A)

Graph Structural Bias and Kernel Alignment

Credits: How Graph Neural Networks Learn: Lessons from Training Dynamics

https://arxiv.org/abs/2310.05105
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• Low homophily  Memorization rate increases. 

• Low homophily (graph structure is less informative)   improves. 

• Low homophily   poor, suggests memorization.

→
→ 𝒜(Θt, A)

→ 𝒜(Θt, Θ*)

Graph Structural Bias and Kernel Alignment
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• In low-homophily settings, a GNN that aligns its NTK with the 
adjacency matrix cannot simultaneously align well with optimal 
kernel. 
•Only way to achieve 0 training loss is via Memorization!

Graph Structural Bias and Kernel Alignment
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TL;DR

•   

• Low homophily  graph structure less informative  GNNs still 
use it! 

•Only way to achieve 0 training loss  Memorize node labels!

Memorization rate ∝
1

Homophily

→ →

→
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Node Atypicality
•We propose a novel Label Disagreement Score (LDS) that measures 

local structural anomaly in the feature space of the nodes. 
•We find nodes with high LDS are the ones that get memorized.

LDSk(vi) =
1
k ∑

vj∈Nk(vi)

𝕀[yj ≠ yi]
yi

yj

yi

yi

vi
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Memorization Scores on Real World Graphs
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LDS on Real-World Graphs
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• GNNs also memorize node labels. 
• As the homophily level of graph increases, the memorization 

substantially decreases. 
• In low-homophily settings, the graph is unhelpful for the task. 

But GNNs have an implicit bias to use the graph structure 
despite that. 
•How to achieve 0 train loss? Memorize! 
•Nodes with high label disagreement score usually get 

memorized.

Summary


