
ON THE IMPORTANCE OF GRAPH-TASK
ALIGNMENT FOR GRAPH NEURAL NETWORKS

Master Thesis
by

Adarsh Jamadandi
Matriculation Number : 7009552

Advisor :
Prof. Dr. Rebekka Burkholz

1. Referee :
Prof. Dr. Rebekka Burkholz

2. Referee :
Prof. Dr. Verena Wolf

August 26, 2024

Contents

Acknowledgements iv

Abstract v

Contributions vi

I. Introduction 1
1. Graph Neural Networks . 2

1.1. Graph Convolutional Networks 3
1.2. Graph Attention Networks 3
1.3. Thesis outline . 4

II. Over-squashing and Over-smoothing in Graph Neural Networks 5
1. Introduction . 5
2. What is Over-squashing? . 6

2.1. How do we know Over-squashing really happens? 7
3. What is Over-smoothing? . 8

3.1. Is all Over-smoothing bad? 9
4. Conclusion . 10

III. Graph Rewiring for Optimal Computational Structure 12
1. Introduction . 12
2. How to characterize the bottlenecks in graphs? 13

2.1. Discrete Ricci Curvature based Graph Rewiring 14
2.2. Spectral Gap based Graph Rewiring 16
2.3. First Order Approximation of Spectral Gap 16
2.4. But what about Over-smoothing? 17

3. The Road Not Taken : Braess Paradox and Graph Rewiring . . 18
3.1. Braess Paradox . 19
3.2. Matrix Perturbation Theory for Proxy Spectral Gap . . . 20
3.3. Yet Another Spectral Gap Proxy 21

i

Contents

4. Experiments . 22
4.1. Long Range Graph Benchmark 23
4.2. Large Heterophilic dataset 24

5. Conclusion . 25

IV. Graph-Task Alignment 27
1. Introduction . 27
2. Graph-Task Alignment in Stochastic Block Model 28

2.1. To Maximize or Not to Maximize 29
3. Surrogate Label Aware Rewiring 32
4. Experiments . 34

4.1. One-shot SoLAR . 34
4.2. Iterative-SoLAR . 35

5. Discussion . 35

Bibliography 40

A. Implementation details 48
1. Reproducibility . 48
2. Hyperparameters for SoLAR . 48
3. Hyperparameters for Spectral Rewiring 50

ii

Sworn declaration

I declare under oath that I have prepared the paper at hand independently
and without the help of others and that I have not used any other sources
and resources than the ones stated. Parts that have been taken literally or
correspondingly from published or unpublished texts or other sources have
been labelled as such. This paper has not been presented to any examination
board in the same or similar form before.

Saarbrücken,

iii

Acknowledgements

I would like to express my heartfelt gratitude to all those whose steadfast
support has been instrumental in the completion of this thesis. First and
foremost, I extend my profound appreciation to Dr. Rebekka Burkholz, my
advisor and mentor, who not only provided me with the opportunity but also
the freedom to explore compelling research questions within the nurturing
environment of CISPA. Her expertise and unwavering encouragement have
been pivotal in shaping both this thesis and my growth as a researcher. I
would also like to thank Dr.Verena Wolf, who initially provided me with the
opportunity to pursue research in Graph Neural Networks and also agreed to
be a co-examiner for my defense. My time as part of the RelationalML lab has
been one of the most enriching experiences of my life. I am particularly indebted
to Celia Rubio-Madrigal for her continuous support, both as a collaborator
on my projects and as a cherished friend. Her exceptional TikZ plots, created
for our joint papers, have made their way into the thesis as well. I also fondly
recall the early days of our group, shared with Advait Gadhikar and Nimrah
Mustafa. I am grateful for the countless thought-provoking discussions we
engaged in. I owe an immense debt of gratitude to my parents Lalita and
Manjunath, whose constant encouragement and support have been my beacon
during the most challenging times. To my brother Vikas, I extend my thanks
for maintaining stability at home in my absence; you have truly grown into an
inspiration. I must also convey my deepest apologies to my late grandmother,
whose funeral I regrettably missed. I acknowledge that I would not be where I
am today without the nurturing care provided by you and grandfather during
my formative years when my parents were occupied with work. Finally, I
would like to express my appreciation to my closest friends, Vinay, Dinesh, and
Aashita, for their unwavering belief in me. It is safe to say that this thesis
could not have been written without their support. Though, of course, any
errors are mine alone.

iv

Abstract

Given a graph and a chosen downstream task such as node classification, how
do we know if the input graph is the optimal computational structure that can
aid in the learning task? Graphs, like all other data modalities, are susceptible
in addition to noise also topological bottlenecks that highly limit generalization
performance. This problem is exacerbated in the context of Graph Neural
Networks (GNNs), which popularly leverage the paradigm of message passing,
because the input graph is not only the data for the model but also the
computational structure on which information is diffused and aggregated to
learn a final graph-level representation. In this thesis, we provably show that a
key factor dictating the performance of a GNN is the alignment between the
node labels and the latent community structure of the graph, which we call the
Graph-Task alignment. We empirically demonstrate that rewiring approaches
which rely on spectral gap do not take into account the pre-existing alignment
and can only strengthen or dampen it. As a resolution, we propose a novel
graph rewiring strategy that considers the node labels. This is non-trivial, since
we do not have access to the test node labels. We propose a graph structure
learning approach that uses the predictions made by a surrogate model as
a proxy for effecting changes to the inter-class and intra-class edges directly.
Through a comprehensive set of experiments on various benchmark datasets,
we substantiate our claims and hypotheses.

v

Contributions

In this thesis - On the Importance of Graph-Task Alignment, we propose novel
graph modification techniques that improve the generalization performance of
Graph Neural Networks. The thesis is based on the following papers -

(i) Adarsh Jamadandi∗, Celia Rubio-Madrigal∗ and Rebekka Burkholz (2024).
Spectral Graph Pruning Against Over-squashing and Over-smoothing.
Pre-print under-review.

(ii) Celia Rubio-Madrigal∗, Adarsh Jamadandi∗ and Rebekka Burkholz (2024).
SoLAR - Surrogate Label Aware Rewiring for Graph-Task Alignment.
Pre-print under-review.

∗ represents joint first authors with equal contributions to the paper. For
the first paper, with crucial inputs from Rebekka Burkholz, initial idea and
all the experiments were carried out by Adarsh Jamadandi. Celia Rubio-
Madrigal carried out theoretical proofs for Braess paradox, performing ring
graph experiments and also establishing time complexity for the algorithms.
For the second paper, with crucial inputs from Rebekka Burkholz, the label
aware rewiring and all the experiments were carried out by Adarsh Jamadandi,
Celia Rubio-Madrigal formulated proofs and analyses for the Stochastic Block
Models.

vi

Chapter I.

Introduction

Deep learning models for graphs commonly adopt the paradigm of message
passing [26, 64, 23, 11], wherein, the input graph not only acts as the data
for the model but is also the computational structure on which information
is aggregated and diffused. Graph Neural Networks (GNNs) have found ex-
tensive applications in Chemistry [59], Biology [8], high-energy Physics [63,
67]. They have recently been used to improve real time ETA (Estimated Time
of Arrival) for Google maps [19] and also to develop highly accurate weather
forecasting model [39]. Despite their proliferation, GNNs are also known to
have many inherent problems, for example, GNNs fail to distinguish simple
sub-structures due to limited expressivity [40, 46, 55]. Some other problems
include over-squashing [1, 72, 24], where topological bottlenecks lead to infor-
mation congestion, affecting message passing and over-smoothing [42, 53, 54,
75, 37], where node features become indistinguishable due to repeated rounds
of aggregation, disallowing for training deeper GNNs.

A common resolution for mitigating problems like over-squashing and over-
smoothing is to operate on a different variant of the input graph that is more
amenable to the message passing framework. This is termed as Graph Rewiring.
The idea is to modify the edge structure of the graph based on certain criteria
such as discrete Ricci curvature [72, 25, 50], spectral gap [36, 35] or transforming
the input graph into expander graphs [62, 18, 3]. Each of these methods have
their own drawbacks, for instance, Ricci curvature based methods fail to scale
to large graphs, while spectral gap based methods that rely on adding edges to
maximize the spectral gap might introduce detrimental over-smoothing [37]. In
the chapters that follow, we will introduce these ideas and the methods proposed
to mitigate them. This offers us an opportunity to see the contributions of this
thesis in the context of the limitations of the aforementioned methods. We show
through extensive experiments that the driving force behind the generalization

1

(a) Social Networks (b) Chemical Molecules (c) High-energy Physics
[67].

Figure I.1.: Graphs are ubiquitous data structures that can model data from
diverse fields including but not limited to social networks, chemical
molecules, biological networks and even particle accelerator colli-
sions can be modelled as graphs.

performance of GNNs can be attributed to the alignment between the inherent
community structure and the node labels and how enhancing this concordance
can better equip GNN models to solve the task at hand.

1. Graph Neural Networks
In this section, we briefly introduce the idea behind message passing and how
GNNs are formulated. We will adopt the definition formalized in [11]. Let
G = (V , E) be a graph and let Nu = {v ∈ V|(v, u) ∈ E} denote the 1-hop
neighborhood of the graph. Let X ∈ RV×k be the associated node features xu

of node u. The message passing scheme can be implemented on the graph as

hu = ϕ

(
xu,

⊕
v∈V

ψ(xu,xv)
)

(I.1)

where ⊕ denotes permutation invariant aggregation function such as SUM
or MAX and (ψ, ϕ) are learnable message passing and final readout functions
respectively. Different variants of GNNs have been proposed, some of them
include Graph Convolutional Networks (GCNs) [38], Graph Attention Networks
(GAT) [73, 10], GraphSAGE [29] and many other specialised architectures
operating on heterophilic graphs [57]. In this work, we will be using GCN [38]
and GATv2 [10] as our backbone architectures for all our experiments.

2

https://distill.pub/2021/gnn-intro/

1.1. Graph Convolutional Networks
GCN introduced in [38] performs convolutions on the graph analogous to
Convolutional Neural Networks (CNNs). Let G = (V , E) be an undirected
and unweighted graph with |V| nodes and |E| edges. The adjacency matrix
A ∈ R|V|×|V| encodes the graph topology. The GCN [38, 14] operates on the
degree normalized adjacency matrix Â = D̃−1/2(A + I)D̃−1/2. Our chosen
downstream task is semi-supervised node classification, that is, given a graph,
we have a set of nodes Vtrain whose labels Ytrain are available, we are required
to predict the labels of nodes Vtest = V\Vtrain. Let Z be the predictions made
by the GCN

Z = softmax(Âσ(ÂXΘ(0))Θ(1) (I.2)
where σ(·) is a non-linear activation function such as ReLU and Θ the weight
matrix. We employ the cross-entropy loss [14] as our objective function,

L(G,Θ) = − 1
|Vlabel|

∑
⊑⟩∈Vlabel

yilog(zi) (I.3)

1.2. Graph Attention Networks
While GCN and GraphSAGE weight the neighbours equally by using ⊕ =
{mean,max} in Equation I.2,[73] propose an attention mechanism in the form
of weighted average of the neighbours Nu. We adopt the notations introduced
in [10]. A score e : Rd × Rd is calculated for every edge (u, v), which captures
how important the features of u are to the node v and is given by

e(hu,hv) = LeakyReLU(aT · [Whu||Whv]) (I.4)
where a ∈ R2d, W ∈ Rd×d are learnable parameters and || denotes vector

concatenation. The final attention scores are calculated as

αu,v = softmaxu(e(hu,hv)) = exp(e(hu,hv))∑
u∈Nv

exp(e(hu,hv)) (I.5)

where ∑u∈Nv
means the attention scores are normalized across all neighbours

v ∈ Nu. The final representation is learnt as

ĥ = σ(
∑

u∈Nv

αu,v · Wh) (I.6)

Authors in [10] modify Equation I.4 to

e(hu,hv) = aT LeakyReLU(W · [hu||hv]) (I.7)

3

and show this simple modification allows the GAT to be more expressive
than one proposed in [73]. This version is called GATv2 and we will be using
this version for our future experiments.

1.3. Thesis outline
In Chapter I, we discussed why graphs are a natural data modality to capture
relational information and we introduced how Graph Neural Networks (GNNs)
are formulated. We also discussed two variants of GNNs that will be used
as backbone architectures for our future experiments. The rest of the thesis
will be organized as follows, in Chapter II, we will introduce the notion of
over-squashing and over-smoothing, the former results from failing to model
information from long range interactions while the latter is due to too many
rounds of information aggregation. Current literature espouses for a trade-off
between these two phenomena, we show it is possible to mitigate both of them
simultaneously. Chapter III will be dedicated to exploring the realm of graph
rewiring and how it allows us to operate on a variant of input graph which is
better equipped to handle message passing. Finally, in Chapter IV, we will
discuss the role of latent community structure and its effect on the generalization
performance of GNNs, followed by our introduction to our novel graph rewiring
strategy SoLAR and present a suite of experiments to substantiate our claims.

4

Chapter II.

Over-squashing and Over-smoothing
in Graph Neural Networks

1. Introduction
In the previous section, we introduced the idea of applying deep learning algo-
rithms for graphs. We highlighted the different models that can be instantiated
based on the aggregation scheme used. We also briefly introduced some inherent
problems GNNs are plagued with, such as, over-squashing, over-smoothing,
limited expressivity. In this section, our focus will be on over-squashing and
over-smoothing. Consider the problem of predicting the properties of the

caffeine molecule using a GNN. To make this prediction, we need to
propagate information from the red atom to the white atom which is located at
a distance. Surprisingly, authors in [1] note that although GNNs are effective in
propagating short-range information, they fail to model the long-range interac-
tions, leading to a phenomenon they refer to as over-squashing. An information
bottleneck prevents the GNN from capturing long-range interactions, leading to
poor generalization performance. A simple fix would be to instantiate a deeper
model, since conventional wisdom from training deep neural networks such as
ResNets [30] has shown that increasing depth should generally help generalize
better. However, in practice, most GNNs are trained with only 2-4 layers, and
one of reasons for this is another limitation of GNNs dubbed over-smoothing1.
As we saw earlier, GNNs operate by exchanging messages on the graph, this
exchange/aggregate (smoothing) steps are necessary for the model to learn

1Note that, the training dynamics and gradient flow problems also severely hinder training
deeper GNNs (although residual blocks and normalization techniques seem to help to a
certain extent). That is not the focus of this thesis

5

important features necessary for the task to be solved, however, it is possible
for the GNN to enter a regime of detrimental smoothing (over-smoothing)
[42, 54, 53, 75, 61] that renders nodes of different classes indistinguishable. It
seems that we are at an impasse, one one hand we have over-squashing that
results from failing to capture all the information and on the other we have
over-smoothing, that results from aggregating too much information. Does this
mean, we have a trade-off that needs to be carefully balanced when training
GNNs? To better understand if that is the case, we will devote this chapter to
deconstruct the two phenomena, setting the stage for the next chapter which
dives into rewiring based resolutions proposed to mitigate these issues.

2. What is Over-squashing?
We will adopt the notation introduced in [1]. Given a graph G = (V , E), the
problem radius r is defined as the required range of interaction between distant
nodes to solve a task. This is characterized by the number of GNN layers (l)
we instantiate. This implies a GNN should have l ≥ r to handle the long range
interactions, however as pointed out in [1, 13], the number of nodes in each
node’s receptive field grows as |N l

u| = O(exp(l)). That is, at every aggregation
step, a node has to keep the learned information from its neighbourhood
which grows exponentially, squashed into fixed-size vectors. We can use the
[72] Jacobian - ∂h(r)

v /∂xu to characterize how the hidden representation h(r)
v

of some node v is not influenced by node feature xu of node u located at a
distance r from v, due to over-squashing. That is, the node representations are
desensitized to information from nodes that are located at the problem radius.
One might wonder, surely increasing the number of GNN layers might help
capture the information from the distant nodes? However, as authors in [1, 24]
show that it does not help with over-squashing as the problem is strongly due
to the topology of the input graph. A paradigm example is that of a barbell
graph shown in Figure II.1, suppose a node from one of the communities need
to send information across to a node in the other community, it can only do so,
through a single edge connecting the two communities. Since all information
has to be propagated through this edge only, this results in a bottleneck that
leads to information congestion, affecting the efficacy of message passing. This
bottleneck can be mathematically characterized by the spectral gap [16] and the
Cheeger constant [12]. We will delve into these formulations in the subsequent
chapter.

6

Figure II.1.: A barbell graph with two communities connected by a single
edge is a paradigm example to demonstrate the presence of a
topological bottleneck that can lead to information congestion
when performing message passing.

2.1. How do we know Over-squashing really happens?
To demonstrate over-squashing really happens, authors [1] devise a synthetic
task called the Tree-NeighboursMatch problem. The GNN is tasked with
predicting the label for node marked ? , it can do so by learning that nodes
A , B have different number of blue node neighbors. So the GNN

prediction for the node marked ? should be C . However, for the prediction
for the node in question, an exponential amount of information has to be
propagated from all the leaves of this tree, which is compressed into a fixed
size vector depending on the aggregation scheme we use. Thus causing an
information bottleneck.

Figure II.2.: Tree-NeighboursMatch Problem. Figure credit : [1].

We instantiate a simple GCN [38] that is trained on this synthetic dataset,
we plot the train accuracy vs the depth of the tree which represents the problem
radius r in Figure II.3. For r = 2, 3, we obtain a train accuracy of 1.0, for
depth, i.e r = 4, we can see the train accuracy is already decreasing rapidly and

7

for increasing depth, the train accuracy is really low. This indicates, due to
over-squashing, the GCN underfits the data and generalizes poorly during test
time. We compare this with our proposed spectral based graph rewiring method
called Proxy-Add that adds edges (more on this in Chapter III). Evidently,
adding edges that maximize the spectral gap can help alleviate over-squashing.
Thus, graph rewiring is a valid approach to mitigate over-squashing and many
criteria such as Ricci curvature [72, 25, 50] and spectral gap [36, 35] based
methods have been proposed. We will discuss each of these methods in detail
in the next chapter.

Figure II.3.: Problem radius vs. Train Accuracy for Tree-Neighbours match
problem.

3. What is Over-smoothing?
Conventional wisdom from training neural networks for image and vision tasks
suggest having deeper layers for the network will help in generalization [30].
Interestingly, this idea does not successfully translate for training deeper GNNs.
Naively stacking multiple GNN layers harms generalization and results in node
features tending to uninformative limit. This behaviour can be explained
in two ways - the first obvious intuition is the problem of gradient flow,

8

training deeper networks is usually hard due to problems like bad initialization
[47] and vanishing gradients. The problem of vanishing gradients can be
somewhat tackled by adding skip connections and normalization techniques
like BatchNorm [34] and/or LayerNorm [2]. The second insight that sheds
light on why training deeper GNNs might be difficult can be explained by
the phenomenon of over-smoothing. [54] analyse the asymptotic behavior of
GCNs, when the layers tend to infinity. Let Ã = A + I and D̃ = D + I
be the adjacent matrix and the degree matrix respectively. The normalized
Laplacian with self-loops is defined as ∆̃ = I − D̃− 1

2 ÃD̃− 1
2 . Looking at the

spectra of the Laplacian, one can show that when stacking multiple GCN layers,
the node features undergo smoothing and will exhibit an information loss at
an exponential rate. This also highlights the fact that, the phenomenon of
over-smoothing is connected to the graph topology as well. Lot of works in the
literature [42, 54, 53, 75, 61] have analysed the phenomenon of over-smoothing
and have provided various fixes to improve training deeper GNNs. Most of
these works use the notion of Dirichlet energy [61] to quantify the similarity
between the embedding nodes,

E(X(l)) = tr(X(l)T ∆̃X(l)) = 1
2
∑

auv|| x(l)
u√

1 + du

− x(l)
v√

1 + dv

||22 (II.1)

where, X(l)) = [x(l)
1 , x

(l)
2 , ...x

(l)
n]T ∈ Rn×d denotes the learned node embeddings at

the lth layer. A smaller Dirichlet energy means the features are over-smoothed,
while a very large Dirichlet energy [75] means over-separating, which means
the node embeddings that should be mapped together are driven apart, which
is again problematic to the learning task.

3.1. Is all Over-smoothing bad?
While Dirichlet energy provides a good notion of over-smoothing and helps
quantify how similar the learned node embeddings are, it fails to convey what
constitutes a good smoothing that is beneficial to the downstream task. Is
all over-smoothing detrimental to the learning task? How do we characterize
the usefulness of the smoothing? [37] provides an interesting alternative view
of over-smoothing, which helps us answer these questions. We will adopt the
notations introduced in [37]. The setup involves training a LinearGNN for
ridge regression task on the features of the graph. The ridge regression can be
formalized as

β̂(l) = argminβ
1

2n ||Y − Z(l)β||2 + λ||β2|| (II.2)

9

where Z(l) represents the smoothed features of the graph after performing l2
steps of mean aggregation. The empirical risk minimization is

R(l) = n−1||Y − Ŷ (l)||2 (II.3)

where Ŷ (k) = Z(k)β̂(l), represents the predictions made. It can be shown that
there is an optimal l∗ > 0 such that R(l∗) < min(R(′),R(∞)), that is, smoothing
provably improves the risk. We can empirical illustrate this phenomenon. We
will reproduce the results presented in [37] on the Cora [45] dataset for 500
steps of mean aggregation. This simple setup mimics the actual GNN training
which involves aggregating and updating information from the graphs to aid in
the learning task. In FigureII.4(a), the features represent when the the agg = 0,
and subsequent Figures II.4(b) II.4(c) represent agg = 10, 500 respectively. The
mean squared error (MSE) vs. the order of smoothing in a log-log plot is given
in Figure II.4(d). This analysis allows us to understand that not all smoothing
is detrimental. In fact, GNNs smooth the features to learn representations. The
MSE plot reveals that for agg = 0 − 50, the MSE is low, indicating beneficial
smoothing which aids the learning task. But for greater number of aggregation
steps, the MSE slowly starts to rise, which is the regime of over-smoothing that
is detrimental to the task, as we see a feature collapse. In the next section, we
will see techniques introduced to mitigate over-squashing and over-smoothing.

4. Conclusion
In this chapter, we have introduced the notion of over-squashing and over-
smoothing. The former results from failing to propagate information due to
bottlenecks while the latter is due to too much information aggregation. We
demonstrate on the Tree-NeighboursMatch problem [1] that adding edges that
maximize the spectral gap can help alleviate over-squashing. We also reproduce
the results of [37] on over-smoothing and show empirically the existence of a
regime very smoothing is beneficial to the learning task. Current literature
that analyse these phenomena propose graph rewiring as a viable strategy to
mitigate these problems with a caveat. Contemporaneous works such as [25,
50] propose a trade-off between over-squashing and over-smoothing, in the
subsequent chapters, we show by leveraging the Braess paradox that we can
tackle both of these problems simultaneously.

2Notational abuse : the number of layers and the number of mean aggregation steps are
both represented as l. Technically they are similar, since increasing the number of layers
is equivalent to just having 1 layer but performing l steps of aggregation.

10

https://github.com/nkeriven/graphsmoothing

0.1 0.0 0.1 0.2 0.3 0.4 0.5
x0

0.2

0.0

0.2

0.4

x1

(a) Node features after agg = 0 .

0.02 0.00 0.02 0.04 0.06 0.08
x0

0.06

0.04

0.02

0.00

0.02

0.04

x1

(b) Node features after agg = 100 .

0.002 0.001 0.000 0.001 0.002 0.003
x0

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

x1

(c) Node features after agg = 500 .

100 101 102

Order of smoothing

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

M
SE

(d) Order of smoothing vs MSE for
Cora.

Figure II.4.: The phenomenon of over-smoothing refers to node features tending
to uninformative limit due to repeated rounds of aggregation.

11

Chapter III.

Graph Rewiring for Optimal
Computational Structure

1. Introduction
In the previous chapter we saw the problems of over-squashing and over-
smoothing and how they affect the overall message passing scheme, consequently
affecting the downstream task. This chapter will be devoted to exploring the
different techniques that have been proposed to mitigate over-squashing and
over-smoothing. We will focus on rewiring the input graph. The notion of
graph rewiring involves effecting changes to the edge structure of the graph,
this allows us to work on a variant of the input graph that is better equipped
to handle message passing. It also allows to circumvent topological bottlenecks
that might be present in the original input graph. To this end, various criteria
such as the discrete Ricci curvature [72, 25, 50] and spectral gap [36, 35] have
been proposed to rewire the graph. The curvature of the edge in a graph
can provide useful information about bottlenecks as we will see in subsequent
sections . Alternatively, probing the spectrum of the normalized Laplacian and
looking at the eigenvalues, specifically the first non-zero eigenvalue, also called
as the spectral gap of the graph provides useful information about convergence
of random walks and mixing time for a diffusion process, and thus the presence
of bottlenecks. These criteria can be leveraged to change the input graph in
a meaningful way that might aid the task. In the sections that follow, we
will discuss in detail the mathematical characterization of bottlenecks and
how Ricci curvature based and spectral gap based criteria will help resolve
these bottlenecks. We also present a novel proxy 1 spectral gap based rewiring

1This section will be based on A. Jamadandi, C. Rubio-Madrigal and R. Burkholz, “Spectral
Pruning against Over-squashing and Over-smoothing [35] Under review.

12

technique that leverages the Braess paradox for the first time for Graph Neural
Networks and show graph pruning can not only mitigate over-squashing but
also prevent detrimental over-smoothing.

2. How to characterize the bottlenecks in graphs?
We will revisit the barbell graph in Figure III.1(a), we have two communities
bridged by a single edge. Suppose a node from one of the communities needs to
communicate with the node in the other community, this long-range dependency
might not be captured by a GNN because of the bottleneck edge that connects
the two communities. The Cheeger constant [12] defined as

hS = min
S⊂V

|∂S|
min{V ol(S), V ol(S\V)} (III.1)

where ∂S = {(u, v) : u ∈ S, v ∈ V\S} and V ol(S) = ∑
u∈S du and du the

degree of the node u, encodes the notion of the bottleneckedness of the graph. A
graph with smaller Cheeger constant implies the presence of bottleneck edges.

(a) . (b) .

Figure III.1.: The barbell graph is a paradigm example to highlight the presence
of topological bottlenecks in a graph. A single edge connecting two
communities will lead to information congestion (Left). Graph
rewiring by adding edges across two communities is a possible
resolution to mitigate over-squashing.

Additionally, we can also look at the graph spectrum to understand the
presence of bottlenecks. For a graph G = (V , E). The Laplacian of the graph is
L = D−A, where A is the adjacency matrix and D the diagonal degree matrix.
The symmetric normalized graph Laplacian is defined as LG = D−1/2LD−1/2.
Let {λ0 < λ1 < λ2, ...λn} be the eigenvalues of LG arranged in ascending

13

order and let λ1(LG) be the first non-zero eigenvalue of the normalized graph
Laplacian, which is also called the spectral gap of the graph. For the graph
in Figure III.1(a), if we were to calculate the spectral gap, we can see that
it is small, thus a smaller spectral gap can also be used as a measure for the
bottleneck. In fact, the Cheeger inequality gives the relationship between
Cheeger constant and the spectral gap of the graph.

hG = minS⊂V hS = 2hG ≥ λ1(LG) ≥ h2
G

2 (III.2)

Thus, one can characterize the presence of bottlenecks either by looking
at the Cheeger constant or the spectral gap of the graph. A smaller value
indicates fewer edges connect communities leading to information congestion.
This characterization lends us a strategy to possibly mitigate over-squashing.
For instance, we can transform the barbell graph in Figure III.1(a) to the graph
in Figure III.1(b) by adding edges (indicated in red), that optimize a certain
quantity that describes the bottleneck. Now there is no single bottleneck edge
responsible for information diffusion but several edges bearing the load and as
we show, performing message passing on this modified graph leads to better
generalization performance.

2.1. Discrete Ricci Curvature based Graph Rewiring
In this section, we will discuss the discrete Ricci curvature based graph rewiring
technique proposed in [72]. The curvature (κ), is a geometrical quantity that
measures how the ambient space curves, for example, if the curvature is zero,
we have the Euclidean space and if the curvature is either positive or negative,
we have the spherical space or the hyperbolic space respectively. The Ricci
curvature [28] on the other hand measures the geodesic dispersion on the
manifolds, that is, if the geodesics stay parallel (κ = 0), converge (κ > 0)
or diverge (κ < 0). We can treat graphs as discrete manifolds and define
analogously a discrete version of the Ricci curvature [52, 51, 68] on the edges of
the graph. This is illustrated in Figure III.2, where the grid graph represents
Ric(u,v) = 0, the Ric(u,v) > 0 represents a complete graph (triangles) and
Ric(u,v) < 0 represents a tree-like structure. Authors in [72] propose a variant
of the Ricci curvature called the balanced Forman curvature and its defined as
follows

Definition III.2.1: Balanced Forman Curvature: [72] For any edge u ∼ v in a
unweighted graph G, we can define Ric(u,v) is 0 if {du, dv} = 1, else

14

Ric(u, v) = 2
du

+ 2
dv

+2−2 |#△(i, j)|
max{du, dv}

+ #△(u, v)
min{du, dv}

+ (γmax)−1

max{du, dv}
(|#u

□|+|#v
□|)

(III.3)
where #△(u, v), represent the triangles in the graph,#u

□ represent the 4-cycle
formed by the edges u ∼ v and γmax(u, v) represent the maximum number of 4
cycles based at a common node p.

(a) Ric(u,v)= 0. (b) Ric(u,v) > 0. (c) Ric(u,v) < 0.

(d) κ = 0. (e) κ > 0. (f) κ < 0.

Figure III.2.

Proposition III.2.2: Cheeger constant and the Balanced Forman Ricci Curva-
ture : If Ric(u,v) ≥ p > 0 for all u ∼ v, then λ1/2 ≥ hG ≥ p/2.

That is, the Cheeger constant can be influenced by changing the curvature of
the graph. More specifically, [72] show negatively curved edges are responsible
for the bottleneck and propose a discrete Ricci curvature based graph rewiring
method, termed Stochastic Discrete Ricci Flow (SDRF), that can be used to
surgically edit edges of the graph G = (V , E) to obtain Ĝ = (V , Ê), a modified
version of the graph with different edge structure. The new graph is potentially
bottleneck free and does not incur over-squashing. The proposed algorithm
runs in O(|E|d2

max).

15

2.2. Spectral Gap based Graph Rewiring
In this section, we will explore the idea of using spectral gap as a measure
for bottlenecks. To reiterate, the spectral gap is the first non-zero eigenvalue
of the normalized Laplacian denoted as λ1. The spectral gap is inherently
linked to the convergence of random walks and the mixing time of a diffusion
process on the graph [31]. A larger spectral gap indicates that the random walk
converges to a stationary distribution faster (and hence bottleneck-free). Thus,
we can use this criterion to rewire the input graph. The idea is to sequentially
add edges to the graph that results in highest spectral gap expansion. The
problem with this strategy is that performing the eigenvalue decomposition
every time the graph is changed is computationally expensive (O(n2)) and is
not practically feasible. To circumvent this problem, authors in [36] propose a
first order approximation of the spectral gap (FoSR) which is computationally
cheaper.

2.3. First Order Approximation of Spectral Gap
We will use the formalism presented in [36], to discuss how to compute the
spectral gap faster. The trick is instead of calculating the full eigenvalue
decomposition, we can approximate the change in the eigenvalues and the
eigenvectors for small perturbations made, in our case these perturbations are
the edges that are added.

Proposition III.2.3: First order change in spectral gap [36] : The first order
change in spectral gap λ1 when an edge u ∼ v is added is given by

λ1 ≈ 2xuxv

(
√

1 + du)(
√

1 + dv)
+2λ1x

2
u(

√
du√

1 + du

−1)+2λ1x
2
v(

√
dv√

1 + dv

−1) (III.4)

where x is the eigenvector corresponding to the spectral gap and xu denotes
the uth entry of the eigenvector. The authors propose to minimize

λfosr = 2xuxv√
(1 + du)(1 + dv)

(III.5)

At each iteration, FoSR aims to add an edge that minimizes Equation III.5
by calculating the second eigenvector x, the initial approximation for the
eigenvector is got by few power iterations that is,

x → D−1/2AD−1/2x− ⟨x,
√
d⟩

2m
√
d (III.6)

16

Thus, the algorithm alternates between calculating the first order approxi-
mation of the spectral gap and computing the eigenvector by power method.
The number of edges to add k is a hyperparameter that is dataset specific. The
goal is to add a small number of edges to the graph, so that we don’t change
the original degree distribution of the graph too much while also inducing
enough changes in the spectrum to ensure the graph is bottleneck free. The
algorithm requires initial power iterations that run in O(m) and then involves
minimizing the first order change in spectral gap by looking for all pairs of
nodes in the graph and then choosing the best edge to add, which results in
O(kn2) complexity.

2.4. But what about Over-smoothing?
Graph rewiring by adding edges is an effective strategy to mitigate over-
squashing. However, we will show that adding edges that maximize the spectral
gap will inevitably lead to over-smoothing. This is expected because spectral
gap based methods are purely topological, that is, they don’t take into account
the labels or the features that accompany the graph. This is both a feature and
a bug, on one hand this lets us cheaply modify the graph to be bottleneck-free,
the downside is that we will invariably end up connecting edges with different
labels. This is problematic during message passing, because the GNN will
aggregate information from nodes that should stay distinguishable, leading to
over-smoothing. Especially for heterophilic2 graphs, where the neighbourhood
for a node might have nodes belonging to different classes.

The authors in [36] also note this problem and propose to use a variant of
GCN called Relational-GCN (R-GCN) [4], that allows for providing special
labels to the existing and newly added edges and empirically show that it is
better for graph classification tasks. This reasoning is limited because in the
case of graph classification, we eventually pool all the aggregated information
from all the nodes and assign a single label to the entire graph. This means
over-smoothing is really not a problem. However, for node classification tasks,
we need the nodes to stay distinguishable and methods like FoSR accelerate
the detrimental smoothing.

2Graphs can be broadly classified as homophilic and heterophilic graphs. The homophilic
graph assumption says like nodes are connected to like nodes and GNNs usually operate
under this assumption when aggregating neighbourhood information.

17

We show this empirically by adopting the Linear GNN test bed discussed in
Section (§3.1). We plot the rate of smoothing vs the MSE for two real-world
graphs Cora [45] which is a homophilic graph and Texas [56], a heterophilic
graph in Figure III.3. We compare the performance of the original graph vs
the graph modified by adding 100 edges using FoSR [36]. We can see in the
plots below that adding edges which are supposed to help with over-squashing
leads to accelerating the detrimental smoothing. This is worse for heterophilic
graphs such as Texas. So does this mean spectral based methods might not be
useful in practice? Or how do we strike a balance between over-squashing and
over-smoothing when rewiring the graph? Is there a trade-off that needs to be
taken care of when using spectral expansion methods?

(a) Order of smoothing vs MSE for Cora. (b) Order of smoothing vs MSE for Texas.

Figure III.3.: We perform ridge regression on the features of graphs Cora and
Texas respectively with 500 steps of mean aggregation. The plot
for order of smoothing vs MSE reveals that adding edges that
maximise spectral gap although help mitigate over-squashing will
invariably lead to over-smoothing.

3. The Road Not Taken : Braess Paradox and Graph
Rewiring

In the previous sections we saw how we can formalize a proxy version of
the spectral gap and use it as a criterion to add edges to a graph resulting
in spectral gap expansion. We also saw that adding edges which maximize
spectral gap although mitigates over-squashing, it will exacerbate the problem
of over-smoothing. Is there a way we can tackle both of these problems

18

simultaneously? Or is it a trade-off that needs to be balanced as advocated
in [25]? These questions form the crux of this section. We introduce a novel
graph modification strategy that allows us to tackle both over-squashing and
over-smoothing simultaneously.

3.1. Braess Paradox
The Braess paradox [9] is an interesting phenomenon that states - if all the
entities in a network selfishly choose their routes then increasing the capacity
of the network will only worsen the overall performance of the network. For
instance, in a traffic network if each commuter chooses their route selfishly,
adding an extra road will increase the commute time for all travellers. Now
this phenomenon is not a vague, isolated event but has profound implications
for network science. The prevalence of this phenomenon has been highlighted
in the context of graphs [16, 17]. In fact, authors in [21] take this analysis
further and show that the spectral gap exhibits this paradox. To demonstrate
the occurrence of this phenomenon we will devise a synthetic ring graph test
bed. In Figure III.4, we have a ring graph R8 with 2 classes represented by
orange and purple color. The following observations can be made :

(i) The original graph G has an edge connecting nodes 3 − 0. Note that the
edge is connecting nodes of different labels. The initial spectral gap is
∼ 0.2829.

(ii) The graph G− is obtained when we delete the edge 0 − 3 resulting in
spectral gap expansion ∼ 0.2929. This is due to the Braess paradox.

(iii) The graph G̃+ is obtained when we add an edge 4−2 to the graph resulting
in spectral gap decrease due to the Braess paradox.

Thus, we can see that the Braess paradox is a prevalent phenomenon and can
be used to influence the spectral gap. This can be mathematically formalized
in a lemma below which is called as the Eldan’s criterion [21].

Lemma III.3.1: Eldan’s criterion [21]: Let G = (V , E) be a finite graph, with f
denoting the eigenvector and λ1(LG) the eigenvalue corresponding to the spectral
gap. Let {u, v} /∈ V be two vertices that are not connected by an edge. Denote
Ĝ = (V , Ê), the new graph obtained after adding an edge between {u, v}, i.e.,
Ê := E ∪ {u, v}. Denote with Pf := ⟨f, f̂0⟩ the projection of f onto the top

19

G
(λ1 ≈ 0.2829)

0
1

6 7

23
4

5

Prune
(λ1 ⇈)

Add
(λ1 ⇊)G−

(λ1 ≈ 0.2929)

0
1

6 7

23
4

5

G̃+
(λ1 ≈ 0.2713)

0
1

6 7

23
4

5

Figure III.4.: The Braess paradox indicates that not all edge additions will
result in spectral gap expansion. Conversely, we can delete an
edge to increase the spectral gap.

eigenvector of Ĝ. Define g (u, v,LG) :=

−P2
fλ1(LG) − 2(1 − λ1(LG))

(√
du + 1 −

√
du√

du + 1
f 2

u +
√
dv + 1 −

√
dv√

dv + 1
f 2

v

)
+

2fufv√
du + 1

√
dv + 1

.

If g (u, v,LG) > 0, then λ1(LG) > λ1(LĜ). This implies that certain edge
additions will decrease the spectral gap contrary to the popular belief. We can
also think of the converse where certain edge deletions will increase the spectral
gap.

3.2. Matrix Perturbation Theory for Proxy Spectral Gap
Now the question is can we leverage this criterion to rewire the graph? More
specifically, can we prune the graph such that it increases the spectral gap?
This would allow us to also afford computational savings since our GNNs could
operate on a sparser graph. At first glance, this criterion seems to serve as
an excellent proxy for spectral gap, however we can see that this criterion is
limited, in the sense, it is expensive to evaluate this criterion for large graphs.
For every edge that needs to be deleted, we would need to temporarily delete
the edge, update the corresponding eigenvectors and eigenvalues, evaluate the
criterion and decide whether to keep the edge or not. This is infeasible. To
circumvent this complexity, we yet again leverage Matrix Perturbation Theory
[70, 44] and use another approximation of the spectral gap [7] given by

λ́ ≈ λ+ ∆wu,v((fu − fv)2 − λ(f 2
u + f 2

v)), (III.7)

20

where λ is the initial eigenvalue; {fu, fv} are entries of the leading eigenvector,
∆wu,v = 1 if we add an edge and ∆wu,v = −1 if we delete an edge. This is
formalized in the Algorithm 1, where we present a greedy version of the Eldan
criterion to prune edges in the graph.

Algorithm 1 Eldan based Greedy Graph Sparsification (EldanDelete)
Require: Graph G = (V , E), num. edges to prune N , spectral gap λ1(LG), top

eigenvector f of G.
repeat

for edges(u, v) ∈ E do
Consider Ĝ = G \ (u, v).
{Note that the denser graph is the original G, so we require approxima-
tions of f̂ and λ1(LĜ) from the sparser Ĝ.}
Estimate eigenvector f̂ from f based on the power iteration method.
Estimate corresponding eigenvalue λ1(LĜ) based on Eq. (III.7).
Compute projection P2

f = ⟨f̂ , f0⟩.
Compute Eldan’s criterion g(u, v,LĜ).

end for
Find the edge that maximizes the criterion: (u−, v−) = argmax

(u,v)∈E
g(u, v,LĜ)

Ê = Ê \ (u−, v−).
Update degrees du− = du− − 1, dv− = dv− − 1
Update eigenvectors and eigenvalues of G accordingly.

until N edges deleted.
Output : Sparse graph Ĝ = (V , Ê).

3.3. Yet Another Spectral Gap Proxy
The Braess paradox via the Eldan criterion gives us a nice proxy for rewiring
the graph. However, we see that although it provides theoretical guarantees for
spectral gap increase when edges are deleted, it is computationally expensive
to use in practice. To circumvent this problem, we propose to optimize the
proxy spectral gap update given in Equation III.7 directly. This is formalized
in Algorithm 2, where we use the proxy update equation as a ranking scheme to
greedily delete edges. The proposed algorithm is computationally efficient as it
runs in O (N · (|E| + s(G))) where N is the number of edges to delete, and s(G)
denotes the complexity of the algorithm that updates the leading eigenvector

21

and eigenvalue at the end of every iteration3 So how good is this proxy? We
plot the spectral gap expansion vs the number of edge modifications on a toy
ER graph with G = (|V|, |E|) = (30, 58), comparing the spectral gap obtained
by full eigenvalue decomposition, using the ProxyAdd, ProxyDelete, FoSR [36]
and also the Eldan criterion in Figure III.5. We can see that our proposed
proxy spectral gap methods are effective in inducing spectral gap expansions.

(a) Edge additions to improve spec-
tral gap expansion.

(b) Edge deletions to improve spec-
tral gap expansion.

Figure III.5.: We instantiate a toy ER graph with 30 nodes and 58 edges. We
compare FoSR [36], our proxy spectral gap based methods, and
our Eldan’s criterion based edge methods.

4. Experiments
We will present a suite of experiments that highlights the efficacy of our
proposed algorithms. In Figure III.6, we present the over-smoothing analyses
for Cora, Citeseer which are homophilic datasets and Texas, Chameleon which
are heterophilic datasets. We train a Linear GNN as in Section §3.1 for 500 steps
of mean aggregation. We compare the results on the original graph which is
unperturbed with graphs modified by adding edges using FoSR [36], ProxyAdd
and deleted using ProxyDelete. Clearly, we can see that adding edges which
maximize the spectral gap will accelerate the process of over-smoothing and
this is worse for heterophilic graphs since we might connect nodes with different
labels, leading to unnecessary information aggregation. On the other hand, our
spectral pruning algorithm is successful in not only alleviating over-squashing

3We employ the eigsh function from the scipy library to obtain the initial estimate of
the spectral gap and its corresponding eigenvector which internally uses the Implictly
Restarted Lanczos Algorithm.

22

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html

Algorithm 2 Proxy Spectral Gap based Greedy Graph Sparsification
(ProxyDelete)
Require: Graph G = (V , E), num. edges to prune N , spectral gap λ1(LG),

second eigenvector f .
repeat

for (u, v) ∈ E do
Consider Ĝ = G \ (u, v).
Calculate proxy value for the spectral gap of Ĝ based on Eq. (III.7):
λ1(LĜ) ≈ λ1(LG) − ((fu − fv)2 − λ1(LG) · (f 2

u + f 2
v))

end for
Find the edge that maximizes the proxy: (u−, v−) = argmax

(u,v)∈E
λ1(LĜ).

Update graph edges: E = E \ (u−, v−).
Update degrees: du− = du− − 1, dv− = dv− − 1
Update eigenvectors and eigenvalues of G accordingly.

until N edges deleted.
Output : Sparse graph Ĝ = (V , Ê).

by increasing the spectral gap but also slows down detrimental smoothing
and it is especially useful in heterophilic settings. We surmise this is because,
spectral pruning will allow us to delete edges between nodes of different labels
and thus effectively avoiding aggregating messages from nodes that need to
stay distinguishable.

4.1. Long Range Graph Benchmark
The Long Range Graph Benchmark (LRGB) datasets have been introduced
[20] specifically to test methods that claim to mitigate over-squashing. The
data statistics are provided in Table III.1. These datasets panning domains like
computer vision and chemistry require propagating long-range information to
accurately learn representations and the only way to ensure our GNNs perform
well on these datasets is if they are able to overcome over-squashing. We adopt
the code base of [71] for our experiments. We compare our methods ProxyAdd
and ProxyDelete with a recently proposed strong baseline called DRew [27] in
Table III.2 with a GCN backbone [38]. We can see that our proposed rewiring
methods help alleviate over-squashing and improve performance significantly
over the baselines.

23

(a) Cora dataset with 200 edges
added (FoSR, ProxyAdd) and
20 deleted (ProxyDelete).

(b) Citeseer dataset with
200 edges added (FoSR,
ProxyAdd) and 100 deleted
(ProxyDelete).

(c) Texas dataset with 200 edges
added (FoSR, ProxyAdd) and
5 deleted (ProxyDelete) .

(d) Chameleon dataset with
200 edges added (FoSR,
ProxyAdd) and 250 deleted
(ProxyDelete).

Figure III.6.: We show on real-world graphs that spectral pruning can not only
mitigate over-squashing by improving the spectral gap but also
slows down the rate of smoothing, thus effectively preventing
over-smoothing as well.

4.2. Large Heterophilic dataset
Our performance improvements on the LRGB datasets reinforce the effectiveness
of our proposed rewiring schemes for mitigating over-squashing. But we also
want our method to alleviate the problem of detrimental over-smoothing.
Unfortunately, there are no standard benchmark datasets to measure over-
smoothing, this is understandable since any GNN model operating on the
simplest of graph with either increased rounds of aggregation steps or by
increasing model depth is prone to over-smoothing. Thus, one of the ways to
quantify if the proposed method is successful in tackling over-smoothing is to
assess if you are able to train deeper GNN models without causing performance
drop. We use the newly introduced large heterophilic graphs [57] and train
5, 10, 20 layers GCN [38] and GAT [73] on Roman-empire, Amazon-ratings and

24

Table III.1.: Statistics of the LRGB Dataset
Dataset Domain Task TotalGraphs TotalNodes TotalEdges Metric

PascalVOC-SP Computer Vision Node Classification 11,355 5,443,545 30,777,444 macro F1
Peptides-func Chemistry Graph Classification 15,535 2,344,859 4,773,974 AP

Peptides-Struct Chemistry Graph Regression 15,535 2,344,859 4,773,974 MAE

Table III.2.: Results on Long Range Graph Benchmark Datasets

Dataset PascalVOC-SP
(Test F1 ↑)

Peptides-Func
(Test AP↑)

Peptides-struct
(Test MAE ↓)

GCN Baseline 0.1268±0.0060 0.5930±0.0023 0.3496±0.0013
DRew+GCN 0.1848±0.0107 0.6996±0.0076 0.2781±0.0028
FoSR+GCN 0.2157±0.0057 0.6526±0.0014 0.2499±0.0006

ProxyAdd+GCN 0.2213±0.0011 0.6789±0.0002 0.2465±0.0004
ProxyDelete+GCN 0.2170±0.0015 0.6908±0.0007 0.2470±0.0080

Minesweeper datasets. We compare the GNN (GCN,GAT) operating on the
original graph, GNN+FoSR which is graph modified by adding edges using
FoSR [36], GNN+EldanAdd and EldanDelete which uses the Eldan criterion
(§III.3.1) for rewiring the graph and finally our ProxyAdd and ProxyDelete
methods. We use the code base of [57] to run the experiments. Note that
all the architectures for these experiments are augmented with normalization
techniques [2, 34] and skip connections [30] to stabilise the training. The
results are presented in Tables III.3,III.4 and III.5. Evidently, for increasing
model depth we can see that the performance is not degraded and infact we
boost performance across model depth. This effectively confirms our hypothesis
that spectral pruning can help with over-smoothing especially for heterophilic
graphs because it will delete edges across nodes with different labels prventing
unnecessary aggregation.

5. Conclusion
In this chapter we have introduced the idea of rewiring the input graph to
obtain a computational structure that is amenable to message passing. GNNs
are known to suffer from problems like over-squashing, which results from
topological bottlenecks that prevent information flow, and over-smoothing, a
phenomenon where too much information aggregation results in feature collapse
rendering nodes indistinguishable. While contemporaneous works [25, 50, 36]
suggest a trade-off between alleviating over-squashing and mitigating over-

25

Table III.3.: Node classification on Roman-Empire dataset.
Method #EdgesAdded Accuracy #EdgesDeleted Accuracy Layers
GCN - 70.30±0.73 - 70.30±0.73 5

GCN+FoSR 50 73.60±1.11 - - 5
GCN+Eldan 50 72.11±0.80 50 79.14±0.73 5

GCN+ProxyGap 50 77.54±0.74 20 77.45±0.68 5
GAT - 80.89±0.70 - 80.89±0.70 5

GAT+FoSR 50 81.88±1.07 - - 5
GAT+Eldan 50 81.13±0.50 100 82.12±0.69 5

GAT+ProxyGap 50 86.07±0.46 20 86.00±0.36 5
GCN - 68.89±0.77 - 68.89±0.77 10

GCN+FoSR 100 73.85±1.26 - - 10
GCN+Eldan 100 75.39±0.96 100 80.40±0.54 10

GCN+ProxyGap 20 78.31±0.47 20 78.19±0.71 10
GAT - 80.23±0.59 - 80.23±0.59 10

GAT+FoSR 100 81.37±1.14 - - 10
GAT+Eldan 100 87.19±0.38 20 86.90±0.37 10

GAT+ProxyGap 20 83.45±0.42 20 86.44±0.40 10
GCN - 67.77±0.90 - 67.77±0.90 20

GCN+FoSR 100 75.14±1.43 - - 20
GCN+Eldan 100 75.52±1.16 20 80.37±0.70 20

GCN+ProxyGap 50 77.96±0.65 20 78.03±0.71 20
GAT - 79.22±0.70 - 79.22±0.70 20

GAT+FoSR 100 80.64±1.12 - 80.64±1.12 20
GAT+Eldan 100 86.79±0.58 50 86.70±0.50 20

GAT+ProxyGap 10 86.25±0.63 20 86.15±0.61 20

Table III.4.: Node classification on
Amazon-Ratings.

Method #EdgesAdded Accuracy #EdgesDeleted Accuracy Layers
GCN - 47.20±0.33 - 47.20±0.33 10

GCN+FoSR 25 49.68±0.73 - - 10
GCN+Eldan 25 48.71±0.99 100 50.15±0.50 10

GCN+ProxyGap 10 49.72±0.41 50 49.75±0.46 10
GAT - 47.43±0.44 - 47.43±0.44 10

GAT+FoSR 25 51.36±0.62 - - 10
GAT+Eldan 25 51.68±0.60 50 51.80±0.27 10

GAT+ProxyGap 20 49.06±0.92 100 51.72±0.30 10
GCN - 47.32±0.59 - 47.32±0.59 20

GCN+FoSR 100 49.57±0.39 - - 20
GCN+Eldan 50 49.66±0.31 20 48.32±0.76 20

GCN+ProxyGap 50 49.48±0.59 500 49.58±0.59 20
GAT - 47.31±0.46 - 47.31±0.46 20

GAT+FoSR 100 51.31±0.44 - - 20
GAT+Eldan 20 51.40±0.36 20 51.64±0.44 20

GAT+ProxyGap 50 47.53±0.90 20 51.69±0.46 20

Table III.5.: Node classification on
Minesweeper.

Method #EdgesAdded Accuracy #EdgesDeleted Test ROC Layers
GCN - 88.57± 0.64 - 88.57± 0.64 10

GCN+FoSR 50 90.15±0.55 - - 10
GCN+Eldan 100 90.11±0.50 50 89.49±0.60 10

GCN+ProxyGap 20 89.59±0.50 20 89.57±0.49 10
GAT - 93.60±0.64 - 93.60±0.64 10

GAT+FoSR 100 93.14±0.43 - - 10
GAT+Eldan 50 93.26±0.48 100 93.82±0.56 10

GAT+ProxyGap 20 93.60±0.69 20 93.65±0.84 10
GCN - 87.41±0.65 - 87.41±0.65 20

GCN+FoSR 100 89.64±0.55 - - 20
GCN+Eldan 72 89.70±0.57 10 88.90±0.44 20

GCN+ProxyGap 20 89.46±0.50 50 89.35±0.30 20
GAT - 93.92±0.52 - 93.92±0.52 20

GAT+FoSR 50 93.56±0.64 - - 20
GAT+Eldan 10 93.92±0.44 20 95.48±0.64 20

GAT+ProxyGap 20 94.89±0.67 20 94.64±0.81 20

smoothing, we challenge this assumption by proposing a novel spectral gap
based graph pruning strategy that leverages the Braess paradox to show that
deleting edges can increase spectral gap and thus alleviating over-squashing
and also slows down detrimental smoothing by deleting edges between nodes
of different labels by preventing unnecessary aggregation. We have performed
extensive experiments on a large range of benchmark datasets and show we
outperform most recent competitive baselines. This chapter provides an ingress
to the idea of having a computational structure that is decoupled from the
actual input graph which contains enough information to solve the task at
hand. In the next chapter we will delve more deeply into this idea.

26

Chapter IV.

Graph-Task Alignment

1. Introduction
In the previous chapter, we introduced the idea of a computational structure
that is better equipped to handle the message passing. This computational
structure can be decoupled from the input graph by inducing changes to the
graph based on criteria such as discrete Ricci curvature [72, 25, 50], spectral gap
[36, 35], effective resistance [6] and even converting the graph into an expander
graph [18, 3]. In this chapter, we ask - Why does spectral maximization
via graph rewiring work? What are the conditions that need to be met for
the spectral rewiring to work? Should we always maximize the spectral gap?
Investigating these questions in detail forms the basis of this chapter, and as a
result of these analyses we propose what is called as the graph-task alignment,
that dictates the success of GNNs when solving a downstream task such as
node classification. The graph-task alignment refers to the alignment that
exists between the node labels and the latent community structure of the
graph, a high degree of alignment allows the GNN to solve the task much
easier. We show that, rewiring methods such as [36, 35] which maximize the
spectral gap overestimate their ability to enhance GNN performance. This is
because, the spectral rewiring methods rely purely on topological information
to modify the graph, and as a result cannot change the pre-existing alignment,
but can either amplify or dampen the existing alignment. Note that the idea
of finding an optimal computational structure has close ties to the paradigm
of graph structure learning (GSL) methods [76], where the idea is to jointly
optimize the graph structure and the GNN model in an end-to-end manner,
such that, the graph structure is suitable for the prediction task. Some examples
include Iterative Deep Graph Learning (IDGL) [15], where the objective is to
use a weighted cosine similarity measure to learn the graph structure from

27

the node embeddings and vice-versa till an optimal graph structure suitable
for the prediction task is obtained. And a graph rewiring method (Deep
Heterophily Graph Rewiring (DHGR))[5] that uses a similarity measure of
the label/features of the node neighbours to add homophilic edges and prune
heterophilic edges in a graph. Both of these methods rely on using non-robust
measures such as cosine similarity [69] as a criterion to induce changes to
the graph structure. In contrast to these approaches, we propose a novel
graph rewiring strategy which we call - S☼LAR - Surogate Label Aware
Rewiring1, that adds/deletes inter-class/intra-class edges based on node labels.
This is challenging since our chosen downstream task is node classification and
we do not have access to labels of test nodes. To circumvent this requirement,
we propose to train a surrogate GNN model, whose predictions are used as proxy
labels to guide the rewiring strategy. We show through a suite of experiments
that, such label-aware rewiring can indeed better align the input graph to the
task at hand, enhancing the generalization performance.

2. Graph-Task Alignment in Stochastic Block Model
Spectral gap based rewiring techniques [36, 35] aim to maximize the second
eigenvalue of the normalized Laplacian, as this is closely linked to the idea of
convergence of random walks [41]. That is, given a diffusion process on the
vertices of the graph, how fast can a process mix or more specifically settle for a
stationary distribution is controlled by the spectral gap. A smaller gap involves
a bottleneck (cf. 2.2), which has also been shown to cause over-squashing
[1, 72] and rewiring the graph by adding or deleting edges that maximize
the spectral gap transforms the input graph into a computational structure
which is bottleneck-free. Consequently, a GNN operating on this modified
graph has been shown to achieve better generalization performance [72, 36,
25, 50, 35]. In this section, we are interested in the question - Does spectral
gap maximization always lead to improved GNN performance?. To answer
this question, we instantiate synthetic datasets based on the Stochastic Block
Model [32], which is a generative random graph model, where communities are
blocks and the preferential attachments are dictated by the intra-class (p) and
inter-class probabilities q respectively.

1This chapter will be based on the paper - C Rubio-Madrigal, A Jamadandi and R Burkholz,
’SoLAR - Surrogate Label Aware Rewiring for Graph-Task Alignment [60].

28

(a) Original SBM. (b) Maximizing spectral
gap.

(c) Minimizing spectral
gap.

Figure IV.1.: Visualizing the effect of spectral graph maximization and mini-
mization by deleting edges on a perfectly aligned SBM with 100
nodes.

(a) SBM after spec-
tral gap maximiza-
tion.

(b) Node embed-
dings before train-
ing a GCN.

(c) Node embed-
dings after train-
ing a GCN.

(d) Loss vs Epochs.

Figure IV.2.: GCN on the SBM after pruning edges that maximize the spectral
gap.

2.1. To Maximize or Not to Maximize
The Stochastic Block Model (SBM (p, q, C)) is a generative model for random
graphs with planted communities. It is characterized by the intra-class proba-
bility p and the inter-class probability q and the number of communities/blocks
C. All our experiments will have a binary community structure. Consider a 2
community SBM depicted in Figure IV.1(a). In the considered example, we
have p = 0.3 and q = 0.03, meaning there are distinctly 2 communities with
only few inter-community edges. Lets apply a community detection algorithm
such as modularity maximization [49] to partition the graph into communities.
We can measure the Normalized Mutual Information (NMI)

NMI(Lclass, Lcluster) = 2I(Lclass;Lcluster)
H(Lclass) +H(Lcluster)

(IV.1)

29

(a) SBM after spec-
tral gap minimiza-
tion.

(b) Node embed-
dings before train-
ing a GCN.

(c) Node embed-
dings after train-
ing a GCN.

(d) Loss vs Epochs.

Figure IV.3.: GCN on SBM after pruning edges that minimize the spectral gap.

where Lclass refers to the class labels, Lcluster is the community labels, H(·) is
the entropy and I(;) measures the mutual information between the class labels
and the assigned community labels. We get a NMI of ∼ 1.0 for the graph in
Figure IV.1(a) indicating that the node class labels align well with assigned
community labels, or more specifically, by setting p > q, we instantiated a
SBM which has a high degree of alignment between the node labels and the
community labels, allowing a community detection algorithm to easily find
the optimal partition. Applying a spectral gap maximization algorithm such
as Algorithm2) to the original SBM graph will result in a graph with intra-
community (due to the alignment, the intra-community edges are same as the
edges connecting nodes with the same labels) edges deleted (Figure IV.1(b)),
weakening the existing community structure. However,if we apply the same
algorithm but minimize the spectral gap we will end up with graph in Figure
IV.1(c), this yields a better NMI than the graph in Figure IV.1(b). This is
because minimizing the spectral gap deletes inter-class edges which helps the
community detection algorithm find the optimal partition. This leads to our
theoretical result - The higher the spectral gap of the SBM, the weaker the
community strength of the graph.

Theorem IV.2.1: Let G be a (p-q)-SBM with N nodes in 2 equally-sized com-
munities and intra/inter-edge probabilities p > q. Let Gdel be a (p′-q)-SBM
where p′ < p, and Gadd be a (p-q′)-SBM where q′ > q. The (expected) spec-
tral gap of G is smaller than those of Gdel and Gadd: λ1(G) < λ1(Gdel), and
λ1(G) < λ1(Gadd). In fact, the spectral gap is approximately ∝ q−p

q+p
.

Thus, not taking into account the pre-existing alignment between the node
labels and the community structure of the graph when maximizing the spectral
gap leads to reduced performance. To further substantiate this hypothesis,

30

we generate a SBM (p, q, C) = (0.3, 0.1, 2), with node features generated from
a normal distribution x ∈ X ∼ N (−1, 1). We train a 2-layered GCN [38] to
perform community detection, the NMI is calculated between the ground truth
community labels and the GCN assigned predictions. Figure IV.2 shows the
SBM after pruning the edges that maximize spectral gap (Figure IV.2(a)), the
node embeddings before and after training a GCN (Figures IV.2(b)IV.2(c))
and the training loss (Figure IV.2(d)). Similarly in Figure IV.3, we can see
the SBM after pruning edges that minimize the gap. Evidently, maximizing
the spectral gap diminishes the existing node label and community structure
alignment, resulting in a poorer training loss. We also log different metrics in
Table IV.1, before and after pruning the edges in the graph. We measure the
Node Label Informativeness (NLI) and the adjusted Homophily score proposed
in [58], which measure how much information a neighboring node gives to
make a decision about the node under consideration and the level of homophily
respectively. We also report the NMI between the predicted labels and the
ground truth labels. Clearly, when there is a high degree of alignment between
the community structure and the node labels, minimizing the spectral gap is
beneficial to solving the task.

Table IV.1.: Different metrics for the SBM graph after training a GCN.
SpectralGap

Before
SpectralGap

After
NLI

Before
NLI
After

Homophily
Before

Homophily
After NMI

0.4933 0.8010 0.18 0.02 0.49 0.15 0.006
0.4933 0.2047 0.18 0.46 0.49 0.73 0.430

(a) GCN test accuracy vs NMI for
Cora.

(b) GCN test accuracy vs NMI for
Citeseer.

Figure IV.4.: Maximizing the spectral gap (using [35]) on Cora and Citeseer
reduces both the graph-task alignment and the test accuracy.

31

GNN
Model A ☼ GNN

Model B

(1) Train A (2) Predict (3) SoLAR Rewire(4) Train B (5) Predict

Figure IV.5.: SoLAR: Surrogate Label Aware Rewiring. A first model A is
trained on the original graph (1), and used to predict its test labels
(2). The graph is then rewired (3) based on these predictions:
adding same-class edges, and/or deleting different-class edges. A
second model B is trained on the new graph (4). This trained
model can be used to test performance (5), but also circle back
to step (2) for an iterative version of SoLAR. We write A☼B to
indicate different model combinations, used in the given order.

The SBM is a simple paradigmatic example to demonstrate the nuances of
aligning the graph with the task at hand and the effect of spectral rewiring,
however in real-world graphs this is not trivial as the alignment can take more
complex forms. For instance, homophilic graphs, where nodes with same labels
are highly likely to be connected resemble the SBM setup we described earlier,
but in heterophilic graphs, the nodes might be connected to different label
nodes. To demonstrate this, we train a GCN [38] on Cora and Citeseer, two
homophilic graphs, for different edge additions that maximize the spectral gap
via our algorithm 2. We measure the NMI between the ground truth labels and
the GCN assigned labels in Figure IV.4. Clearly, adding edges that maximize
the spectral gap adds edges between nodes of different labels, weakening the
latent community structure (as seen by the decrease in NMI), which further
affects the GCN performance.

3. Surrogate Label Aware Rewiring
We saw in the previous section that spectral based graph rewiring techniques
fail to induce any kind of graph-task alignment but can only enhance/dampen

32

Table IV.2.: Node classification using one-shot SoLAR on large heterophilic
graphs.

Method Roman-Empire Amazon-Ratings Penn94
GCN 77.74±0.60 47.66±0.54 82.29±0.77

GATv2 82.52±0.50 47.66±0.95 81.85±3.02
GCN+FoSR 73.60±1.11 49.68±0.73 69.73±7.83

GATv2+FoSR 81.88±1.07 51.36±0.62 72.56±5.55
GCN☼GCN+Delete 80.90±0.14 50.30±0.09 83.59±1.40
GCN☼GCN+Add 81.13±0.21 49.86±0.11 83.65±1.69

GATv2☼GATv2+Delete 84.32±0.80 52.06±0.00 83.58±1.60
GATv2☼GATv2+Add 84.27±0.40 52.08±0.09 83.60±1.32

the existing alignment. In fact, since the spectral gap based rewiring techniques
rely purely on the topological information, it is possible they can enhance a
badly aligned graph or might even dampen an already existing good alignment.
Methods like [36, 35] rely on modifying a small number of edges so that
the GNN performance on the downstream task is improved, but changing
the original degree distribution of the graph (as seen in Figure IV.4) too
much, will have a negative effect on the generalization performance. To
circumvent these limitations we need a graph rewiring strategy that can induce
the graph-task alignment directly, and to do this, we need a way to ensure
the node labels align with the latent community structure of the graph. We
propose a novel graph rewiring strategy called S☼LAR - Surrogate Label Aware
Rewiring, that modifies the graph based on node labels. Given a unweighted
and undirected graph G = (V , E), where |V| represents the nodes and |E| the
edges, the adjacency matrix A ∈ R|V|×|V| encodes the graph topology. The
degree normalized adjacency matrix is given by Â = D̃−1/2(A+ I)D̃−1/2, here
X is the associated node features. The task is to perform node classification in
a transductive setting. That is, given a set of nodes Vtrain whose labels Ytrain

are available, we are required to predict the labels of nodes Vtest = V\Vtrain.
Let Z be the predictions made by the GCN [38]

Z = softmax(Âσ(ÂXΘ(0))Θ(1) (IV.2)

where σ(·) is a non-linear activation function such as ReLU and Θ the weight
matrix. We are interested in rewiring the graph based on node labels, note
that we have access to the labels of the training nodes but not the test nodes.
A simple yet highly effective strategy is to train a GNN model (a surrogate
model) to obtain predictions on the test nodes and use them as proxy labels for
graph rewiring. Our rewiring process works in two stages. In the first stage, we
instantiate a surrogate GNN Z1 = fsurrogate(G,Θ) (such as in Equation (IV.2)),

33

and train it to convergence to obtain a set of predicted labels. We then use the
predicted labels, Z1 = Yproxy, to rewire the graph by either deleting inter-class
edges and/or adding intra-class edges to obtain a rewired graph Ĝ = (V , Ê)

—we use the predictions on the test set, as we already have access to the ground
truth labels for the nodes in the train set. In the second stage, we instantiate a
second ‘training’ GNN ftrain(Ĝ,Θ), which operates on the new computational
structure. Note that f(G,Θ) can be any model which is expressive enough.
We present two variants of our rewiring procedure called one-shot SoLAR and
Iterative SoLAR, where we can either modify the graph in a one-shot way or
iteratively modify the graph. We present a comprehensive set of experiments
in the next section that highlight the effectiveness of our proposed approach.

(a) ELI,NMI and Homophily
scores after deleting edges using
GCN☼GCN for homophilic graphs.

(b) ELI,NMI and Homophily
scores after deleting edges using
GCN☼GCN for heterophilic
graphs.

Figure IV.6.: The effect of one-shot rewiring on ELI, homophily and NMI on
Cora, Citeseer, Chameleon and Squirrel datasets

4. Experiments
4.1. One-shot SoLAR

We perform a comprehensive set of experiments to validate our hypothesis. We
conduct experiments on Cora [45], Citeseer [65], Pubmed [48], CS, Physics
and Photo [66] which are homophilic datasets. And Cornell, Texas, Squirrel,
Chameleon, Squirrel, Actor, Roman-empire, Amazon-ratings [57] and Penn94
[43] which are heterophilic datasets. Our main backbone models are SGC [74],

34

GCN[38] and GATv2 [10]. We denote the model combinations as GNN1☼GNN2,
where GNN1 = {SGC,GCN, GATv2} and GNN2 = {SGC,GCN,GATv2} with
extensions Add/Delete to represent whether we are adding intra-class edges
or deleting inter-class edges. The first model is the surrogate model whose
predictions are used as proxy labels and the second model represents the
final training model. We also present results for both additions and deletions
simultaneously. Our baseline comparisons are against FoSR [36] which adds
edges based on spectral gap maximization, Proxydelmin [35] which deletes
edges that minimize the spectral gap. Note that any expressive GNN model
can be used including more complex architectures like Graph Transformers,
but since the rewiring framework involves training 2 GNN models, we would
want the training to be computationally less expensive. We also resort to
deleting/adding edges randomly during the rewiring to further ensure the
method is computationally friendly. In Tables IV.2, IV.5,IV.6, we present the
results for the large heterophilic datasets, homophilic and other small and
medium sized heterophilic datasets for one-shot SoLAR respectively with GCN
and GATv2 model combinations. In Tables IV.3 and IV.4, we present results
with Simplified Graph Convolution (SGC) [74], a version of GCN with all the
weight matrices collapsed into one matrix and with non-linearity such as ReLU
removed.

4.2. Iterative-SoLAR

In Figures IV.7(a),IV.7(b), we present the results for the iterative version
of SoLAR which uses a combination of GCN☼GATv2☼GCN models. The
GCN model is trained first to provide proxy labels, based on the labels a
subset of edges are added/deleted, for instance for Cora we can approximately
delete 1500 inter-class edges, instead of deleting all the edges in a one-shot
manner, we can choose to delete 750 edges in 2 iterations. After deleting
750 edges we now train a GATv2 and then update the predictions of the
proxy labels from GATv2 delete the remaining 750 edges and finally train
a GCN model again. In Figures IV.8(a) and IV.8(b) we present results for
GATv2☼GCN☼GATv2 models.Clearly, from the figures we can see that iterative
version yields significantly higher performance than one-shot methods.

5. Discussion
In this chapter, we have proposed the idea of graph-task alignment as one of
the key factors influencing the GNN performance. Furthering our analysis, we

35

Table IV.3.: Node classification results on homophilic graphs with SGC.
Method Cora Citeseer Pubmed CS Physics Photo

SGC 88.78±0.48 80.51±0.59 82.47±0.41 93.39±0.18 95.21 ± 0.06 86.48±1.00
GCN 87.94±3.35 79.38±3.48 81.99±1.42 92.44±0.67 94.49 ± 0.04 92.89±1.23

GCN☼SGCDelete 88.10±0.48 80.14±0.64 82.12±0.32 93.68±0.13 94.97±0.03 89.93±0.83
GCN☼SGCAdd 89.02±0.48 79.14±0.72 82.06±0.37 93.43±0.18 OOM 87.15±0.98

GATv2☼SGCDelete 89.55±0.56 82.28±0.89 82.55±0.36 93.77±0.22 94.48±0.07 89.96±0.89
GATv2☼SGCAdd 89.16±0.50 80.85±0.83 81.96±0.38 93.44±0.18 OOM 87.26±0.98

Table IV.4.: Node classification results on heterophilic graphs with SGC.
Method Cornell Texas Wisconsin Chameleon Squirrel Actor

SGC 65.14±1.70 73.70±1.70 66.04±1.40 55.26±1.12 45.16±1.12 29.23 ±0.55
GCN 68.31±8.13 73.47±10.13 66.14±9.23 54.64±6.94 43.25±6.32 28.26±3.22

GCN☼SGCDelete 67.89±1.75 74.89±2.04 69.37±1.19 57.79±1.29 45.85±1.35 28.32±0.57
GCN☼SGCAdd 68.39±1.89 74.63±1.95 67.53±1.38 53.87±1.26 43.08±1.25 26.85±0.52

GATv2☼SGCDelete 75.86±1.86 83.13±2.13 74.04±1.40 66.82±2.11 47.71±1.35 30.32±0.83
GATv2☼SGCAdd 83.73±2.16 86.40±2.28 81.09±1.83 64.20±2.07 45.45±1.22 27.01±0.60

can validate why this node label aware graph rewiring works. The Edge Label
Informativeness (ELI) proposed in [58] has been shown to correlate well with
the GNN performance. Given an edge (u, v) ∈ |E|, the class labels of the nodes
are yu and yv respectively. We are interested in measuring how much does
knowing the label yu give information about predicting the label yv. We can
measure the normalized mutual information as,

ELI = H(yu) −H(yu|yv)
H(yu) (IV.3)

where we can write, I(yu, yv) = H(yu) − H(yu|yv) and H(·) represents the
entropy. In Figures IV.6(a) and IV.6(b), we measure the ELI, the homophily
score proposed in [58] and NMI (Equation IV.1) which is measured by per-
forming community detection on the rewired graph for Cora, Citeseer, Squirrel
and Chameleon datasets after deleting inter-class edges using GCN☼GCN. For
increasing edge deletions, we can see that the measures consistently increase
for both homophilic and heterophilic graphs, this supports our hypothesis that
our proposed rewiring scheme helps in the downstream task by improving the
available information in the neighbourhood by eliminating confusing edges that
might lead to detrimental information aggregation. In Figure IV.9, we plot the
T-SNE plots for the node embeddings for Cora and Squirrel after training it on
GCN and GCN☼GCN Deletions. We can see that the node embeddings belong-
ing to different classes are well separated, further reinforcing our hypothesis
that node label based rewiring is beneficial since it is successful in inducing the

36

Table IV.5.: Node classification on homophilic graphs using one-shot SoLAR.
Method Cora Citeseer Pubmed CS Physics Photo
GCN 87.94±3.35 79.38±3.48 81.99±1.42 92.44±0.67 93.64±0.16 92.89±1.23

GATv2 89.13±3.13 81.92±4.81 81.83±1.04 91.90±1.59 94.07±0.44 91.22±2.18
GCN+FoSR 88.74±2.70 79.48±3.77 82.22±1.24 93.54±0.80 94.72±0.21 90.57±3.82

GATv2+FoSR 89.72±2.91 81.75±4.86 81.29±2.31 92.35±1.21 93.96±0.40 90.48±2.57
GCN+Proxydelmin 89.35±2.92 79.56±2.96 82.89±1.53 93.66±0.83 94.61±0.27 92.46±2.16

GATv2+Proxydelmin 89.61±3.00 81.57±3.56 81.59±1.43 93.31±1.21 94.43±0.33 93.86±1.61
GCN☼GCN+Delete 90.17±2.82 82.22±4.01 82.61±1.16 93.00±0.21 93.96±0.10 93.75±0.99
GCN☼GCN+Add 90.06±2.56 83.26±4.44 83.05±2.50 92.46±0.56 95.47±0.31 92.13±0.32

GATv2☼GATv2+Delete 90.06±3.31 83.01±4.32 82.41±2.46 94.16±1.79 95.01±0.54 93.78±1.30
GATv2☼GATv2+Add 89.63±3.16 81.78±4.44 81.32±1.66 92.79±1.58 94.25±0.46 93.36±1.93
GCN☼GATv2+Delete 90.23±0.59 81.48±0.77 83.15±0.26 93.96±0.15 87.01±2.09 94.80±0.03
GCN☼GATv2+Add 90.01±0.58 81.42±0.85 82.29±0.31 93.41±0.22 84.61±2.51 94.30±0.05

GATv2☼GCN+Delete 90.42±0.65 83.93±0.90 83.20±0.28 93.38±0.26 92.08±0.62 94.56±0.04
GATv2☼GCN+Add 90.47±0.60 83.44±0.86 82.71±0.27 93.65±0.17 92.47±0.44 94.67±0.03

Table IV.6.: Node classification on heterophilic graphs using one-shot SoLAR.
Method Cornell Texas Wisconsin Chameleon Squirrel Actor
GCN 68.31±8.13 73.47±10.13 66.14±9.23 54.64±6.94 43.25±6.32 28.26±3.22

GATv2 86.84±9.78 89.01±10.43 87.56±9.20 61.79±10.20 45.71±5.12 29.41±2.98
GCN+FoSR 71.64±9.80 73.93±10.23 65.85±7.73 54.40±6.58 42.80±6.40 28.66±3.21

GATv2+FoSR 76.12±6.51 78.15±7.81 74.08±9.01 46.48 ± 4.97 47.40±7.17 27.45±3.61
GCN+Proxydelmin 81.94±7.96 83.46±10.90 70.63±7.68 53.64±6.00 41.26±5.35 28.58±2.93

GATv2+Proxydelmin 85.40±7.64 83.44±9.52 79.78±11.26 66.15±12.01 45.02±5.13 32.37±4.36
GCN☼GCN+Delete 68.35±8.54 74.12±9.89 67.85±7.14 57.19 ± 6.45 44.50±6.29 29.25±3.50
GCN☼GCN+Add 69.42±8.93 74.20±10.26 68.51±7.20 56.43 ± 6.16 44.04±6.34 28.16±3.22

GATv2☼GATv2+Delete 87.40±9.89 90.14±10.64 88.32±9.08 68.89±11.50 49.10±5.59 30.31±4.29
GATv2☼GATv2+Add 87.12±9.59 87.97±10.95 87.76±9.57 66.35±11.18 46.44±6.00 29.46±4.67
GCN ☼GATv2+Delete 84.03±2.12 86.91±2.23 84.53±1.95 60.11±1.59 47.98±1.17 30.02±0.73
GCN ☼GATv2+Add 83.11±1.88 85.01±2.10 85.96±1.70 54.99±1.42 43.17±1.10 30.09±0.93

GATv2 ☼GCN+Delete 78.63±2.01 84.65±2.12 77.65±1.86 68.60±2.20 47.89±1.36 30.91±0.94
GATv2 ☼GCN+Add 85.37±2.22 87.43±2.28 83.00±1.96 68.27±2.34 47.70±1.23 29.15±0.85

alignment. Our approach works for both homophilic and heterophilic settings
contrary to methods which use non-robust feature similarity measures [33, 5]
or require expensive k-hop rewiring during training [27] to be effective. Our
approach is also more powerful in that it is capable of directly influencing
measures (Figure IV.6) that are critical for GNN performance, as opposed to
methods that rely purely on the topological characteristics of the input graph
[72, 36, 50, 25, 35] like the spectral gap. However, it is important to note
that the quality of rewiring largely depends on the surrogate model’s ability to
provide accurate labels. If the predicted labels are too noisy, they will also not
be very informative for the rewiring, and may even amplify issues that were
already present in the initial model.

37

(a) Node classification on homophilic
graphs using Iterative-SoLAR with GCN
backbone.

(b) Node classification on heterophilic
graphs using Iterative-SoLAR with GCN
backbone.

Figure IV.7.: Iterative-SoLAR+GCN.

(a) Node classification on homophilic
graphs using Iterative-SoLAR with GATv2
backbone.

(b) Node classification on heterophilic
graphs using Iterative-SoLAR with GATv2
backbone.

Figure IV.8.: Iterative-SoLAR+GATv2.

38

(a) GCN trained on the original
Cora graph.

(b) GCN☼GCN trained on Cora
with 1500 inter-class edge deletions.

(c) GCN trained on the original
Squirrel graph.

(d) GCN☼GCN trained on Squirrel
with 20K inter-class edge deletions.

Figure IV.9.: We plot T-SNE for Cora and Squirrel datasets after training a
GCN on the original graph and the rewired graph.

39

Bibliography

[1] Uri Alon and Eran Yahav. “On the Bottleneck of Graph Neural Networks
and its Practical Implications”. In: International Conference on Learning
Representations. 2021. url: https://openreview.net/forum?id=
i80OPhOCVH2.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Nor-
malization. 2016. arXiv: 1607.06450 [stat.ML].

[3] Pradeep Kr. Banerjee et al. “Oversquashing in GNNs through the Lens
of Information Contraction and Graph Expansion”. In: 2022 58th An-
nual Allerton Conference on Communication, Control, and Comput-
ing (Allerton). Monticello, IL, USA: IEEE Press, 2022, pp. 1–8. doi:
10.1109/Allerton49937.2022.9929363. url: https://doi.org/10.
1109/Allerton49937.2022.9929363.

[4] Peter W Battaglia et al. “Relational inductive biases, deep learning, and
graph networks”. In: arXiv preprint arXiv:1806.01261 (2018).

[5] Wendong Bi et al. Make Heterophily Graphs Better Fit GNN: A Graph
Rewiring Approach. 2022. arXiv: 2209.08264 [cs.LG].

[6] Mitchell Black et al. “Understanding oversquashing in GNNs through
the lens of effective resistance”. In: Proceedings of the 40th International
Conference on Machine Learning. ICML’23. Honolulu, Hawaii, USA:
JMLR.org, 2023.

[7] Aleksandar Bojchevski and Stephan Günnemann. “Adversarial Attacks
on Node Embeddings via Graph Poisoning”. In: Proceedings of the 36th
International Conference on Machine Learning, ICML. Proceedings of
Machine Learning Research. PMLR, 2019.

[8] Pietro Bongini et al. “BioGNN: How Graph Neural Networks Can Solve
Biological Problems”. In: Artificial Intelligence and Machine Learning
for Healthcare. Springer, 2023, pp. 211–231.

40

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://arxiv.org/abs/1607.06450
https://doi.org/10.1109/Allerton49937.2022.9929363
https://doi.org/10.1109/Allerton49937.2022.9929363
https://doi.org/10.1109/Allerton49937.2022.9929363
https://arxiv.org/abs/2209.08264

[9] Dietrich Braess, Anna Nagurney, and Tina Wakolbinger. “On a Paradox
of Traffic Planning”. In: Transportation Science 39.4 (2005), pp. 446–450.
doi: 10.1287/trsc.1050.0127. eprint: https://doi.org/10.1287/
trsc.1050.0127. url: https://doi.org/10.1287/trsc.1050.0127.

[10] Shaked Brody, Uri Alon, and Eran Yahav. “How Attentive are Graph
Attention Networks?” In: International Conference on Learning Represen-
tations. 2022. url: https://openreview.net/forum?id=F72ximsx7C1.

[11] Michael M. Bronstein et al. “Geometric Deep Learning: Grids, Groups,
Graphs, Geodesics, and Gauges”. In: CoRR abs/2104.13478 (2021). arXiv:
2104.13478. url: https://arxiv.org/abs/2104.13478.

[12] Jeff Cheeger. “A lower bound for the smallest eigenvalue of the Laplacian”.
In: 1969.

[13] Jianfei Chen, Jun Zhu, and Le Song. “Stochastic Training of Graph
Convolutional Networks with Variance Reduction”. In: International
Conference on Machine Learning. 2018, pp. 941–949.

[14] Tianlong Chen et al. “A Unified Lottery Ticket Hypothesis for Graph
Neural Networks”. In: International Conference on Machine Learning.
2021.

[15] Yu Chen, Lingfei Wu, and Mohammed J. Zaki. “Iterative Deep Graph
Learning for Graph Neural Networks: Better and Robust Node Em-
beddings”. In: CoRR abs/2006.13009 (2020). arXiv: 2006.13009. url:
https://arxiv.org/abs/2006.13009.

[16] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society,
1997.

[17] Fan Chung and Stephen J. Young. “Braess’s Paradox in Large Sparse
Graphs”. In: Internet and Network Economics. Springer Berlin Heidelberg,
2010.

[18] Andreea Deac, Marc Lackenby, and Petar Veličković. “Expander Graph
Propagation”. In: The First Learning on Graphs Conference. 2022. url:
https://openreview.net/forum?id=IKevTLt3rT.

[19] Austin Derrow-Pinion et al. “ETA Prediction with Graph Neural Networks
in Google Maps”. In: CoRR abs/2108.11482 (2021).

[20] Vijay Prakash Dwivedi et al. Long Range Graph Benchmark. 2023. arXiv:
2206.08164 [cs.LG].

41

https://doi.org/10.1287/trsc.1050.0127
https://doi.org/10.1287/trsc.1050.0127
https://doi.org/10.1287/trsc.1050.0127
https://doi.org/10.1287/trsc.1050.0127
https://openreview.net/forum?id=F72ximsx7C1
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2006.13009
https://arxiv.org/abs/2006.13009
https://openreview.net/forum?id=IKevTLt3rT
https://arxiv.org/abs/2206.08164

[21] Ronen Eldan, Miklós Z. Rácz, and Tselil Schramm. “Braess’s paradox for
the spectral gap in random graphs and delocalization of eigenvectors”.
In: Random Structures & Algorithms 50 (2017).

[22] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. “Dif-
fusion Improves Graph Learning”. In: Conference on Neural Information
Processing Systems (NeurIPS). 2019.

[23] Justin Gilmer et al. “Neural Message Passing for Quantum Chemistry”. In:
Proceedings of the 34th International Conference on Machine Learning -
Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org, 2017, pp. 1263–
1272.

[24] Francesco Di Giovanni et al. On Over-Squashing in Message Passing
Neural Networks: The Impact of Width, Depth, and Topology. 2023. arXiv:
2302.02941 [cs.LG].

[25] Jhony H. Giraldo et al. “On the Trade-off between Over-Smoothing and
Over-Squashing in Deep Graph Neural Networks”. In: Proceedings of
the 32nd ACM International Conference on Information and Knowledge
Management. CIKM ’23. Birmingham, United Kingdom: Association
for Computing Machinery, 2023, pp. 566–576. doi: 10.1145/3583780.
3614997. url: https://doi.org/10.1145/3583780.3614997.

[26] M. Gori, G. Monfardini, and F. Scarselli. “A new model for learning in
graph domains”. In: Proceedings. 2005 IEEE International Joint Con-
ference on Neural Networks, 2005. Vol. 2. 2005, 729–734 vol. 2. doi:
10.1109/IJCNN.2005.1555942.

[27] Benjamin Gutteridge et al. “DRew: Dynamically Rewired Message Passing
with Delay”. In: International Conference on Machine Learning. PMLR.
2023, pp. 12252–12267.

[28] Richard Hamilton. “The ricci flow on surfaces”. In: Mathematics and
general relativity, Proceedings of the AMS-IMS-SIAM Joint Summer
Research Conference in the Mathematical Sciences on Mathematics in
General Relativity. 1988.

[29] William L. Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive Repre-
sentation Learning on Large Graphs”. In: NIPS. 2017, pp. 1024–1034.

[30] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

42

https://arxiv.org/abs/2302.02941
https://doi.org/10.1145/3583780.3614997
https://doi.org/10.1145/3583780.3614997
https://doi.org/10.1145/3583780.3614997
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/CVPR.2016.90

[31] Christopher Hoffman, Matthew Kahle, and Elliot Paquette. “Spectral
gaps of random graphs and applications”. In: International Mathematics
Research Notices 2021.11 (2021), pp. 8353–8404.

[32] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.
“Stochastic blockmodels: First steps”. In: Social Networks 5.2 (1983),
pp. 109–137. issn: 0378-8733. doi: https://doi.org/10.1016/0378-
8733(83)90021-7. url: https://www.sciencedirect.com/science/
article/pii/0378873383900217.

[33] Qian Huang et al. “Combining Label Propagation and Simple Models
Out-performs Graph Neural Networks”. In: CoRR abs/2010.13993 (2020).

[34] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. 2015. arXiv:
1502.03167 [cs.LG].

[35] Adarsh Jamadandi, Celia Rubio-Madrigal, and Rebekka Burkholz. Spec-
tral Graph Pruning Against Over-Squashing and Over-Smoothing. 2024.
arXiv: 2404.04612 [cs.LG].

[36] Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. “FoSR:
First-order spectral rewiring for addressing oversquashing in GNNs”. In:
The Eleventh International Conference on Learning Representations. 2023.
url: https://openreview.net/forum?id=3YjQfCLdrzz.

[37] Nicolas Keriven. “Not too little, not too much: a theoretical analysis of
graph (over)smoothing”. In: The First Learning on Graphs Conference.
2022. url: https://openreview.net/forum?id=KQNsbAmJEug.

[38] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with
Graph Convolutional Networks”. In: ICLR. 2017.

[39] Remi Lam et al. “Learning skillful medium-range global weather forecast-
ing”. In: Science 382.6677 (2023), pp. 1416–1421.

[40] Adrien Leman. “THE REDUCTION OF A GRAPH TO CANONICAL
FORM AND THE ALGEBRA WHICH APPEARS THEREIN”. In: 1968.

[41] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains
and mixing times. American Mathematical Society, 2006.

[42] Guohao Li et al. “DeepGCNs: Can GCNs Go as Deep as CNNs?” In: The
IEEE International Conference on Computer Vision (ICCV). 2019.

43

https://doi.org/https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/https://doi.org/10.1016/0378-8733(83)90021-7
https://www.sciencedirect.com/science/article/pii/0378873383900217
https://www.sciencedirect.com/science/article/pii/0378873383900217
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/2404.04612
https://openreview.net/forum?id=3YjQfCLdrzz
https://openreview.net/forum?id=KQNsbAmJEug

[43] Derek Lim et al. “Large Scale Learning on Non-Homophilous Graphs:
New Benchmarks and Strong Simple Methods”. In: Advances in Neural
Information Processing Systems. Ed. by A. Beygelzimer et al. 2021. url:
https://openreview.net/forum?id=DfGu8WwT0d.

[44] Ulrike von Luxburg. “A tutorial on spectral clustering”. In: Statistics and
Computing 17.4 (2007), pp. 395–416. doi: 10.1007/s11222-007-9033-z.
url: https://doi.org/10.1007/s11222-007-9033-z.

[45] Andrew Kachites McCallum et al. “Automating the Construction of
Internet Portals with Machine Learning”. In: Information Retrieval 3.2
(2000), pp. 127–163. doi: 10 . 1023 / A : 1009953814988. url: https :
//doi.org/10.1023/A:1009953814988.

[46] Christopher Morris et al. “Weisfeiler and Leman Go Neural: Higher-Order
Graph Neural Networks”. In: Proceedings of the AAAI Conference on
Artificial Intelligence 33.01 (2019), pp. 4602–4609. doi: 10.1609/aaai.
v33i01.33014602. url: https://ojs.aaai.org/index.php/AAAI/
article/view/4384.

[47] Nimrah Mustafa, Aleksandar Bojchevski, and Rebekka Burkholz. “Are
GATs Out of Balance?” In: Thirty-seventh Conference on Neural In-
formation Processing Systems. 2023. url: https://openreview.net/
forum?id=qY7UqLoora.

[48] Galileo Namata et al. “Query-driven Active Surveying for Collective
Classification”. In: 2012.

[49] M. E. Newman. “Modularity and community structure in networks”. In:
Proceedings of the National Academy of Sciences 103.23 (2006), pp. 8577–
8582. doi: 10.1073/pnas.0601602103.

[50] Khang Nguyen et al. Revisiting Over-smoothing and Over-squashing Using
Ollivier-Ricci Curvature. 2023. arXiv: 2211.15779 [cs.LG].

[51] Chien-Chun Ni et al. “Network Alignment by Discrete Ollivier-Ricci Flow”.
In: Graph Drawing and Network Visualization. Ed. by Therese Biedl and
Andreas Kerren. Springer International Publishing, 2018, pp. 447–462.

[52] Chien-Chun Ni et al. “Ricci curvature of the Internet topology”. In: 2015
IEEE Conference on Computer Communications (INFOCOM). 2015,
pp. 2758–2766. doi: 10.1109/INFOCOM.2015.7218668.

[53] Hoang NT and Takanori Maehara. “Revisiting Graph Neural Networks:
All We Have is Low-Pass Filters”. In: ArXiv abs/1905.09550 (2019).

44

https://openreview.net/forum?id=DfGu8WwT0d
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1023/A:1009953814988
https://doi.org/10.1023/A:1009953814988
https://doi.org/10.1023/A:1009953814988
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://ojs.aaai.org/index.php/AAAI/article/view/4384
https://ojs.aaai.org/index.php/AAAI/article/view/4384
https://openreview.net/forum?id=qY7UqLoora
https://openreview.net/forum?id=qY7UqLoora
https://doi.org/10.1073/pnas.0601602103
https://arxiv.org/abs/2211.15779
https://doi.org/10.1109/INFOCOM.2015.7218668

[54] Kenta Oono and Taiji Suzuki. “Graph Neural Networks Exponentially
Lose Expressive Power for Node Classification”. In: International Confer-
ence on Learning Representations. 2020.

[55] Pál András Papp et al. “DropGNN: Random Dropouts Increase the
Expressiveness of Graph Neural Networks”. In: Advances in Neural In-
formation Processing Systems. Ed. by A. Beygelzimer et al. 2021. url:
https://openreview.net/forum?id=fpQojkIV5q8.

[56] Hongbin Pei et al. “Geom-GCN: Geometric Graph Convolutional Net-
works”. In: International Conference on Learning Representations. 2020.
url: https://openreview.net/forum?id=S1e2agrFvS.

[57] Oleg Platonov et al. “A critical look at evaluation of GNNs under het-
erophily: Are we really making progress?” In: The Eleventh International
Conference on Learning Representations. 2023.

[58] Oleg Platonov et al. “Characterizing Graph Datasets for Node Classifica-
tion: Homophily-Heterophily Dichotomy and Beyond”. In: The Second
Learning on Graphs Conference. 2023. url: https://openreview.net/
forum?id=D4GLZkTphJ.

[59] Patrick Reiser et al. “Graph neural networks for materials science and
chemistry”. In: Communications Materials 3.1 (2022), p. 93. url: https:
//doi.org/10.1038/s43246-022-00315-6.

[60] Celia Rubio-Madrigal, Adarsh Jamadandi, and Rebekka Burkholz. SoLAR
: Surrogate Label Aware Graph Rewiring for Graph-Task Alignment. 2024.
url: https://adarshmj.github.io/assets/publications/SOLAR_
_Surrogate_Label_Aware_Rewiring_for_Graph_Task_Alignment_
in_GNNs.pdf.

[61] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra.
A Survey on Oversmoothing in Graph Neural Networks. 2023. arXiv:
2303.10993 [cs.LG].

[62] Justin Salez. Sparse expanders have negative curvature. 2021. arXiv:
2101.08242 [math.PR].

[63] Alvaro Sanchez-Gonzalez et al. “Learning to Simulate Complex Physics
with Graph Networks”. In: Proceedings of the 37th International Confer-
ence on Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119.
Proceedings of Machine Learning Research. PMLR, 2020, pp. 8459–8468.
url: https://proceedings.mlr.press/v119/sanchez-gonzalez20a.
html.

45

https://openreview.net/forum?id=fpQojkIV5q8
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=D4GLZkTphJ
https://openreview.net/forum?id=D4GLZkTphJ
https://doi.org/10.1038/s43246-022-00315-6
https://doi.org/10.1038/s43246-022-00315-6
https://adarshmj.github.io/assets/publications/SOLAR__Surrogate_Label_Aware_Rewiring_for_Graph_Task_Alignment_in_GNNs.pdf
https://adarshmj.github.io/assets/publications/SOLAR__Surrogate_Label_Aware_Rewiring_for_Graph_Task_Alignment_in_GNNs.pdf
https://adarshmj.github.io/assets/publications/SOLAR__Surrogate_Label_Aware_Rewiring_for_Graph_Task_Alignment_in_GNNs.pdf
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/2101.08242
https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html

[64] Franco Scarselli et al. “The Graph Neural Network Model”. In: IEEE
Transactions on Neural Networks 20.1 (2009), pp. 61–80. doi: 10.1109/
TNN.2008.2005605.

[65] Prithviraj Sen et al. “Collective Classification in Network Data”. In: AI
Magazine 29.3 (2008), p. 93. doi: 10.1609/aimag.v29i3.2157. url:
https://ojs.aaai.org/index.php/aimagazine/article/view/2157.

[66] Oleksandr Shchur et al. Pitfalls of Graph Neural Network Evaluation.
2019. arXiv: 1811.05868 [cs.LG].

[67] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. “Graph neu-
ral networks in particle physics”. In: Machine Learning: Science and
Technology 2.2 (2021), p. 021001. doi: 10.1088/2632-2153/abbf9a. url:
https://doi.org/10.1088/2632-2153/abbf9a.

[68] R P Sreejith et al. “Forman curvature for complex networks”. In: Journal
of Statistical Mechanics: Theory and Experiment 2016.6 (2016), p. 063206.
doi: 10.1088/1742-5468/2016/06/063206. url: https://dx.doi.
org/10.1088/1742-5468/2016/06/063206.

[69] Harald Steck, Chaitanya Ekanadham, and Nathan Kallus. “Is Cosine-
Similarity of Embeddings Really About Similarity?” In: Companion Pro-
ceedings of the ACM on Web Conference 2024. Vol. 201. WWW ’24.
ACM, May 2024, pp. 887–890. doi: 10.1145/3589335.3651526. url:
http://dx.doi.org/10.1145/3589335.3651526.

[70] G.W. Stewart and J. Sun. Matrix Perturbation Theory. Computer Science
and Scientific Computing. Elsevier Science, 1990. isbn: 9780126702309.
url: https://books.google.de/books?id=l78PAQAAMAAJ.

[71] Jan Tönshoff et al. Where Did the Gap Go? Reassessing the Long-Range
Graph Benchmark. 2023. arXiv: 2309.00367 [cs.LG].

[72] Jake Topping et al. “Understanding over-squashing and bottlenecks on
graphs via curvature”. In: International Conference on Learning Represen-
tations. 2022. url: https://openreview.net/forum?id=7UmjRGzp-A.

[73] Petar Veličković et al. “Graph Attention Networks”. In: ICLR. 2018.
[74] Felix Wu et al. “Simplifying Graph Convolutional Networks”. In: Proceed-

ings of the 36th International Conference on Machine Learning. Ed. by
Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings
of Machine Learning Research. PMLR, Sept. 2019, pp. 6861–6871. url:
https://proceedings.mlr.press/v97/wu19e.html.

46

https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1609/aimag.v29i3.2157
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://arxiv.org/abs/1811.05868
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1088/1742-5468/2016/06/063206
https://dx.doi.org/10.1088/1742-5468/2016/06/063206
https://dx.doi.org/10.1088/1742-5468/2016/06/063206
https://doi.org/10.1145/3589335.3651526
http://dx.doi.org/10.1145/3589335.3651526
https://books.google.de/books?id=l78PAQAAMAAJ
https://arxiv.org/abs/2309.00367
https://openreview.net/forum?id=7UmjRGzp-A
https://proceedings.mlr.press/v97/wu19e.html

[75] Kaixiong Zhou et al. “Dirichlet energy constrained learning for deep graph
neural networks”. In: Advances in neural information processing systems
(2021).

[76] Zhiyao Zhou et al. OpenGSL: A Comprehensive Benchmark for Graph
Structure Learning. 2023. arXiv: 2306 . 10280 [cs.LG]. url: https :
//arxiv.org/abs/2306.10280.

47

https://arxiv.org/abs/2306.10280
https://arxiv.org/abs/2306.10280
https://arxiv.org/abs/2306.10280

Appendix A.

Implementation details

1. Reproducibility
We use Pytorch Geometric (https://pytorch-geometric.readthedocs.io/
en/latest/) and Deep graph library (DGL) (https://www.dgl.ai) for all our
experiments. For experiments concerning spectral gap based rewiring we use a
60/20/20 split for training,validation and testing respectively for datasets Cora,
Citeseer, Pubmed, Cornell, Texas, Wisconsin, Squirrel, Chameleon and Actor.
The final test accuracy is reported averaged over 10 splits, with each split
further averaged over 5 random seeds. For datasets Roman-empire, Amazon-
ratings and Minesweeper we use the experimental setup proposed by authors
in [57]. For experiments on SoLAR, we use the splits proposed by authors in
[66] and the final test accuracy is reported averaged over 100 splits. The code
base to reproduce all the results is available here -

• SoLAR - https://github.com/AdarshMJ/SoLAR

• Spectral gap based pruning -https://github.com/AdarshMJ/SpectralPruningBraess

2. Hyperparameters for SoLAR

Below we present the hyperparameters used for SoLAR both one-shot and
iterative versions, along with the empirical runtimes and the dataset statistics.

48

https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://www.dgl.ai
https://github.com/AdarshMJ/SoLAR
https://github.com/AdarshMJ/SpectralPruningBraess

Table A.1.: Statistics of the graphs used. We use the largest connected compo-
nent for all our experiments.

Dataset #Nodes #Edges
Cora 2,708 10,138

Citeseer 3,327 7,358
Pubmed 19,717 88,648
Cornell 183 277
Texas 183 279

Wisconsin 251 450
Chameleon 890 8,854

Squirrel 2,223 57,850
Actor 7,600 26,659

CS 18,333 1,63,788
Physics 34,493 4,95,924
Photo 7,650 2,38,162

Roman-empire 22,662 32,927
Amazon-ratings 24,492 93,050

Penn94 41,554 13,62,229

Table A.2.: Hyperparameters for one
shot GCN☼GCN+Del

Dataset EdgesDeleted LR HiddenDimension Runtime
Cora 1500 0.01 32 71.43

Citeseer 1500 0.01 32 84.08
Pubmed 10000 0.01 32 90.79
Cornell 100 0.001 128 86.76
Texas 100 0.001 128 73.94

Wisconsin 100 0.001 128 77.23
Chameleon 5400 0.001 128 76.82

Squirrel 310000 0.001 128 78.70
Actor 16000 0.001 128 80.12

CS 22000 0.01 128 200.90
Physics 30000 0.01 128 412.47
Photo 35000 0.01 512 263.11

Table A.3.: Hyperparameters for one
shot GCN☼GCN+Add

Dataset EdgesAdded LR HiddenDimension Runtime
Cora 6929 0.01 32 89.43

Citeseer 7168 0.01 32 70.88
Pubmed 352 0.01 32 94.07
Cornell 55 0.001 128 88.76
Texas 54 0.001 128 74.33

Wisconsin 41 0.001 128 86.68
Chameleon 4088 0.001 128 70.35

Squirrel 12349 0.001 128 74.85
Actor 12215 0.001 128 78.38

CS 8680 0.01 32 129.36
Physics 45991 0.01 32 351.85
Photo 26846 0.01 32 108.79

Table A.4.: Hyperparameters for one
shot GAT☼GAT+Add

Dataset EdgesAdded LR HiddenDimension Runtime
Cora 9711 0.001 32 149.73

Citeseer 11996 0.001 32 192.35
Pubmed 17647 0.001 32 594.85
Cornell 37 0.001 32 134.70
Texas 55 0.001 32 123.80

Wisconsin 49 0.001 32 135.06
Chameleon 4167 0.001 32 105.65

Squirrel 20754 0.001 32 313.19
Actor 30251 0.001 32 388.99

CS 27592 0.001 32 2292.85
Physics 46700 0.001 32 1761.90
Photo 27713 0.01 32 456.02

Table A.5.: Hyperparameters for one
shot GAT☼GAT+Del

Dataset EdgesDeleted LR HiddenDimension Runtime
Cora 1700 0.001 32 105.27

Citeseer 1500 0.001 32 116.28
Pubmed 14126 0.001 32 395.73
Cornell 120 0.001 32 100.89
Texas 120 0.001 32 131.33

Wisconsin 120 0.001 32 131.69
Chameleon 6000 0.001 32 169.09

Squirrel 35000 0.001 32 212.64
Actor 30000 0.001 32 139.54

CS 30000 0.001 32 1579.53
Physics 30000 0.001 32 3766.81
Photo 40264 0.001 32 450.34

49

Table A.6.: Hyperparameters for Iterative-SoLAR for GCN☼GCN edge dele-
tions.

Model Dataset LR HiddenDimension LR HiddenDimension Runtime
GCN☼GCNDelIter Cora 0.01 32 0.01 32 144.65
GCN☼GCNDelIter Citeseer 0.01 32 0.01 32 147.60
GCN☼GCNDelIter Pubmed 0.01 32 0.01 32 411.81
GCN☼GCNDelIter CS 0.01 32 0.01 32 1347.70
GCN☼GCNDelIter Photo 0.01 32 0.01 32 2063.57
GCN☼GCNDelIter Physics 0.01 32 0.01 32 4969.71
GCN☼GCNDelIter Cornell 0.001 128 0.001 128 141.09
GCN☼GCNDelIter Texas 0.001 128 0.001 128 142.33
GCN☼GCNDelIter Wisconsin 0.001 128 0.001 128 142.33
GCN☼GCNDelIter Chameleon 0.001 128 0.001 128 157.65
GCN☼GCNDelIter Squirrel 0.001 128 0.001 128 395.13
GCN☼GCNDelIter Actor 0.001 128 0.001 128 229.87

Table A.7.: Hyperparameters for Iterative-SoLAR for GCN☼GCN edge addi-
tions.

Model Dataset LR HiddenDimension LR HiddenDimension Runtime
GCN☼GCNAddIter Cora 0.01 32 0.01 32 409.66
GCN☼GCNAddIter Citeseer 0.01 32 0.01 32 696.17
GCN☼GCNAddIter Pubmed 0.01 32 0.01 32 4393.44
GCN☼GCNAddIter CS 0.01 32 0.01 32 974.78
GCN☼GCNAddIter Photo 0.01 32 0.01 32 2272.33
GCN☼GCNAddIter Physics 0.01 32 0.01 32 10310.70
GCN☼GCNAddIter Cornell 0.001 128 0.001 128 212.67
GCN☼GCNAddIter Texas 0.001 128 0.001 128 204.39
GCN☼GCNAddIter Wisconsin 0.001 128 0.001 128 204.20
GCN☼GCNAddIter Chameleon 0.001 128 0.001 128 509.40
GCN☼GCNAddIter Squirrel 0.001 128 0.001 128 938.76
GCN☼GCNAddIter Actor 0.001 128 0.001 128 918.85

3. Hyperparameters for Spectral Rewiring
Below we present the results for node classification before and after spectral
gap based rewiring on datasets: Cora [45], Citeseer [65] and Pubmed [48],Cor-
nell,Wisconsin,Texas, Chameleon, Squirrel, Actor [58]. We compare GCN
[38] without any modifications to the original graph, DIGL by [22], SDRF by
[72], and FoSR by [36]. We adopt the public implementations available and
tune the hyperparameters to improve the performance if possible. Our results
are presented in Table A.10. We compare GCN with no edge modifications,
GCN+DIGL, GCN+SDRF, GCN+FoSR, GCN+EldanDelete where we
delete the edges, GCN+EldanAdd where we add the edges according to the
criterion from Lemma III.3.1 and ProxyAdd and ProxyDelete which use

50

Table A.8.: Hyperparameters for Iterative-SoLAR for GCN☼GATv2 edge dele-
tions.

Model Dataset LR HiddenDimension LR HiddenDimension Runtime
GCN☼GATv2DelIter Cora 0.01 32 0.001 32 190.72
GCN☼GATv2DelIter Citeseer 0.01 32 0.001 64 187.22
GCN☼GATv2DelIter Pubmed 0.01 32 0.001 32 468.10
GCN☼GATv2DelIter CS 0.01 128 0.001 32 173.93
GCN☼GATv2DelIter Photo 0.01 512 0.001 32 175.24
GCN☼GATv2DelIter Physics 0.01 32 0.001 32 175.44
GCN☼GATv2DelIter Cornell 0.001 128 0.001 32 194.10
GCN☼GATv2DelIter Texas 0.001 128 0.001 32 426.81
GCN☼GATv2DelIter Wisconsin 0.001 128 0.001 32 263.64
GCN☼GATv2DelIter Chameleon 0.001 128 0.001 32 2156.36
GCN☼GATv2DelIter Squirrel 0.001 128 0.001 32 2977.70
GCN☼GATv2DelIter Actor 0.001 128 0.001 32 6292.84

Table A.9.: Hyperparameters for Iterative-SoLAR for GCN☼GATv2 edge addi-
tions.

Model Dataset LR HiddenDimension LR HiddenDimension Runtime
GCN☼GATv2AddIter Cora 0.01 32 0.001 32 311.17
GCN☼GATv2AddIter Citeseer 0.01 32 0.001 32 305.38
GCN☼GATv2AddIter Pubmed 0.01 32 0.001 32 2815.99
GCN☼GATv2AddIter CS 0.01 128 0.001 32 198.06
GCN☼GATv2AddIter Photo 0.01 512 0.001 32 241.03
GCN☼GATv2AddIter Physics 0.01 32 0.001 32 238.01
GCN☼GATv2AddIter Cornell 0.001 128 0.001 32 305.70
GCN☼GATv2AddIter Texas 0.001 128 0.001 32 587.08
GCN☼GATv2AddIter Wisconsin 0.001 128 0.001 32 986.07
GCN☼GATv2AddIter Chameleon 0.001 128 0.001 32 4318.28
GCN☼GATv2AddIter Squirrel 0.001 128 0.001 32 1479.35
GCN☼GATv2AddIter Actor 0.001 128 0.001 32 6694.26

Equation (III.7) to optimize the spectral gap directly. The top performance is
highlighted in bold.

51

Table A.10.: We compare the performance of GCN augmented with different
graph rewiring methods on node classification.

Method Cora
H = 0.8041

Citeseer
H = 0.7347

Pubmed
H = 0.8023

Cornell
H = 0.1227

Wisconsin
H = 0.1777

Texas
H = 0.060

Actor
H = 0.2167

Chameleon
H = 0.2474

Squirrel
H = 0.2174

GCN 87.22±0.40 77.35±0.70 86.96±0.17 50.74±7.24 53.52±7.80 50.40±10.01 29.12±0.24 31.15±0.84 26.00±0.69
GCN+DIGL 83.21±0.79 73.29±0.17 78.84±0.008 42.04±4.43 44.22±5.02 57.35±6.46 26.33±1.22 38.95±0.99 32.45±0.88
GCN+SDRF 87.84±0.68 78.43±0.62 87.36±0.14 53.54±2.65 58.78±3.22 60.25±4.97 31.67±0.36 41.30±1.36 38.98±0.46
GCN+FoSR 91.44±3.16 82.13±4.29 91.49±1.89 53.91±8.67 58.63±9.55 63.50±11.07 38.01±7.48 46.64±7.70 50.73±6.93

GCN+EldanDelete 87.60±0.18 78.68±0.54 87.33±0.07 65.13±13.02 67.84±7.65 70.53±6.70 43.65±9.88 52.51±8.12 48.89±7.89
GCN+EldanAdd 88.38±0.12 79.45 ±0.37 87.17±0.14 69.05±6.17 64.08±6.58 67.10±8.91 43.64±10.00 48.09±7.30 51.66±6.50
GCN+ProxyAdd 89.10±0.70 78.94±0.54 87.54±0.24 66.54±9.56 67.75±7.96 74.21±10.64 43.45±9.93 54.30±6.27 48.85±6.14

GCN+ProxyDelete 87.51±0.81 78.68 ±0.55 87.39±0.11 66.60 ± 6.50 66.36±7.17 72.36±7.88 43.52±9.64 55.88±5.48 48.90±7.68

Table A.11.: Hyperparameters for GCN+our proposed rewiring algorithms.
Dataset LR HiddenDimension Dropout EldanAdd EldanDelete ProxyAdd ProxyDelete

Cora 0.01 32 0.3130296 50 20 100 100
Citeseer 0.01 32 0.4130296 50 20 50 50
Pubmed 0.01 128 0.3130296 50 100 20 50
Cornell 0.001 128 0.4130296 100 5 50 20

Wisconsin 0.001 128 0.5130296 100 5 50 10
Texas 0.001 128 0.4130296 100 5 50 76
Actor 0.001 128 0.2130296 100 10 25 500

Chameleon 0.001 128 0.2130296 100 50 50 200
Squirrel 0.001 128 0.5130296 50 100 10 1000

Table A.12.: Hyperparameters for SDRF.
Dataset LR Dropout Hidden

Dimension
SDRF

Iterations τ C+

Cora 0.01 0.3130296 32 100 163 0.95
Citeseer 0.01 0.2130296 32 84 180 0.22
Pubmed 0.01 0.4130296 128 166 115 1443
Cornell 0.001 0.2130296 128 126 145 0.88

Wisconsin 0.001 0.2130296 128 89 22 1.64
Texas 0.001 0.2130296 128 136 12 7.95
Actor 0.01 0.4130296 128 3249 106 7.91

Chameleon 0.01 0.2130296 128 2441 252 2.84
Squirrel 0.01 0.2130296 128 1396 436 5.88

Table A.13.: Hyperparameters for
FoSR.

Dataset LR Dropout Hidden
Dimension

FoSR
Iterations

Cora 0.01 0.5130296 128 50
Citeseer 0.01 0.3130296 128 10
Pubmed 0.01 0.4130296 128 50
Cornell 0.001 0.2130296 128 100

Wisconsin 0.001 0.2130296 128 100
Texas 0.001 0.4130296 128 100
Actor 0.01 0.4130296 128 100

Chameleon 0.01 0.4130296 128 100
Squirrel 0.01 0.2130296 128 100

Table A.14.: Hyperparameters for
DIGL.

Dataset LR Dropout Hidden
Dimension α κ

Cora 0.01 0.41 32 0.0773 128
Citeseer 0.01 0.31 32 0.1076 -
Pubmed 0.01 0.41 128 0.1155 128
Cornell 0.001 0.41 128 0.1795 64

Wisconsin 0.001 0.31 128 0.1246 -
Texas 0.001 0.41 128 0.0206 32
Actor 0.01 0.21 128 0.0656 -

Chameleon 0.01 0.41 128 0.0244 64
Squirrel 0.01 0.41 128 0.0395 32

52

	Acknowledgements
	Abstract
	Contributions
	Introduction
	Graph Neural Networks
	Graph Convolutional Networks
	Graph Attention Networks
	Thesis outline

	Over-squashing and Over-smoothing in Graph Neural Networks
	Introduction
	What is Over-squashing?
	How do we know Over-squashing really happens?

	What is Over-smoothing?
	Is all Over-smoothing bad?

	Conclusion

	Graph Rewiring for Optimal Computational Structure
	Introduction
	How to characterize the bottlenecks in graphs?
	Discrete Ricci Curvature based Graph Rewiring
	Spectral Gap based Graph Rewiring
	First Order Approximation of Spectral Gap
	But what about Over-smoothing?

	The Road Not Taken : Braess Paradox and Graph Rewiring
	Braess Paradox
	Matrix Perturbation Theory for Proxy Spectral Gap
	Yet Another Spectral Gap Proxy

	Experiments
	Long Range Graph Benchmark
	Large Heterophilic dataset

	Conclusion

	Graph-Task Alignment
	Introduction
	Graph-Task Alignment in Stochastic Block Model
	To Maximize or Not to Maximize

	Surrogate Label Aware Rewiring
	Experiments
	One-shot SoLAR
	Iterative-SoLAR

	Discussion

	Bibliography
	Implementation details
	Reproducibility
	Hyperparameters for SoLAR
	Hyperparameters for Spectral Rewiring

